I am running a regression in the context online shopping with the price on the number of competitors (n_comp) and the number of algorithmic competitors (n_algo) per product (and some other covariates). I am using fixed effects on the product level (bbox_prod_id).
I run the below regression. I am interested in the interactions; I want to know how to the price inreases when holding the number of competitors constant when out of those the number of algorithmic sellers increases; hence: n_comp ## n_algo20. I use
Code:
ssc install reghdfe
Code:
reghdfe bbox_price rating deliverytime ib1.n_comp##ib0.n_algo20, vce(robust) absorb(i.bbox_prod_id)
Code:
HDFE Linear regression Number of obs = 2,461,755
Absorbing 1 HDFE group F( 30,2459633) = 724.32
Prob > F = 0.0000
R-squared = 0.9987
Adj R-squared = 0.9987
Within R-sq. = 0.0110
Root MSE = 8.1160
---------------------------------------------------------------------------------
| Robust
bbox_price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
rating | .0669766 .016844 3.98 0.000 .033963 .0999903
deliverytime | .0301215 .0028871 10.43 0.000 .0244628 .0357802
|
n_comp |
2 | -8.697992 .5367493 -16.20 0.000 -9.750002 -7.645982
3 | -9.906928 .5329557 -18.59 0.000 -10.9515 -8.862353
4 | -12.66134 .5337393 -23.72 0.000 -13.70745 -11.61523
5 | -13.27949 .5358449 -24.78 0.000 -14.32973 -12.22925
6 | -13.82984 .5354704 -25.83 0.000 -14.87934 -12.78034
7 | -14.14701 .5342757 -26.48 0.000 -15.19417 -13.09985
8 | -13.86282 .5336693 -25.98 0.000 -14.90879 -12.81684
9 | -13.89057 .533477 -26.04 0.000 -14.93617 -12.84498
10 | -14.67815 .5332516 -27.53 0.000 -15.72331 -13.633
|
n_algo20 |
1 | -5.244431 .5690095 -9.22 0.000 -6.35967 -4.129192
2 | .535371 .0689879 7.76 0.000 .4001572 .6705849
3 | 0 (omitted)
|
n_comp#n_algo20 |
1 2 | 0 (empty)
1 3 | 0 (empty)
2 1 | 7.540803 .5746086 13.12 0.000 6.41459 8.667016
2 2 | 0 (empty)
2 3 | 0 (empty)
3 1 | 6.097393 .5701206 10.69 0.000 4.979976 7.214809
3 2 | -3.511021 .1565072 -22.43 0.000 -3.81777 -3.204273
3 3 | 0 (empty)
4 1 | 6.887074 .568199 12.12 0.000 5.773423 8.000724
4 2 | 3.785494 .115617 32.74 0.000 3.558888 4.012099
4 3 | 0 (empty)
5 1 | 7.991913 .5708438 14.00 0.000 6.873079 9.110747
5 2 | 2.884401 .0997314 28.92 0.000 2.688931 3.079872
5 3 | 0 (empty)
6 1 | 5.56643 .5699694 9.77 0.000 4.44931 6.683551
6 2 | 1.858377 .0829974 22.39 0.000 1.695705 2.021049
6 3 | 0 (empty)
7 1 | 6.180863 .5700949 10.84 0.000 5.063497 7.298229
7 2 | 1.392782 .0746451 18.66 0.000 1.24648 1.539083
7 3 | 0 (empty)
8 1 | 5.323021 .5719871 9.31 0.000 4.201946 6.444096
8 2 | .7164914 .0739854 9.68 0.000 .5714826 .8615002
8 3 | 0 (empty)
9 1 | 5.287586 .5728889 9.23 0.000 4.164744 6.410429
9 2 | -.4005877 .0574081 -6.98 0.000 -.5131056 -.2880697
9 3 | 2.381554 .0584047 40.78 0.000 2.267083 2.496025
10 1 | 6.379034 .5722008 11.15 0.000 5.25754 7.500527
10 2 | 0 (omitted)
10 3 | 0 (omitted)
|
_cons | 69.77762 .560874 124.41 0.000 68.67832 70.87691
---------------------------------------------------------------------------------Code:
margins n_comp#n_algo20
Code:
margins, dydx(n_algo20) at(n_comp = (1(1)9))
Code:
. margins n_comp#n_algo20
Predictive margins Number of obs = 2,461,755
Model VCE : Robust
Expression : Linear prediction, predict()
---------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
n_comp#n_algo20 |
1 0 | . (not estimable)
1 1 | . (not estimable)
1 2 | . (not estimable)
1 3 | . (not estimable)
2 0 | . (not estimable)
2 1 | . (not estimable)
2 2 | . (not estimable)
2 3 | . (not estimable)
3 0 | . (not estimable)
3 1 | . (not estimable)
3 2 | . (not estimable)
3 3 | . (not estimable)
4 0 | 57.79425 .0338954 1705.08 0.000 57.72781 57.86068
4 1 | . (not estimable)
4 2 | . (not estimable)
4 3 | . (not estimable)
5 0 | 57.1761 .0393538 1452.87 0.000 57.09896 57.25323
5 1 | . (not estimable)
5 2 | . (not estimable)
5 3 | . (not estimable)
6 0 | . (not estimable)
6 1 | . (not estimable)
6 2 | . (not estimable)
6 3 | . (not estimable)
7 0 | 56.30857 .0287326 1959.74 0.000 56.25226 56.36489
7 1 | . (not estimable)
7 2 | . (not estimable)
7 3 | . (not estimable)
8 0 | . (not estimable)
8 1 | 56.67136 .0742454 763.30 0.000 56.52584 56.81688
8 2 | . (not estimable)
8 3 | . (not estimable)
9 0 | 56.56502 .0230195 2457.27 0.000 56.5199 56.61013
9 1 | . (not estimable)
9 2 | . (not estimable)
9 3 | . (not estimable)
10 0 | . (not estimable)
10 1 | . (not estimable)
10 2 | . (not estimable)
10 3 | . (not estimable)
---------------------------------------------------------------------------------
.Thank you all!
marcello
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double bbox_price float bol_seller double rating float deliverytime byte n_comp int n_algo20 float bbox_prod_id 12.5 1 . 1 4 0 179 12.5 0 8.4 6 4 0 179 12.5 0 9 6 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 6 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 6 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 6 4 0 179 12.5 0 8.4 6 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 6 4 0 179 12.5 0 9 6 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.4 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 9 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 8.4 5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 5 4 0 179 12.5 0 9 5.5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 5.5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.4 5.5 4 0 179 12.5 0 9 5.5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5.5 4 0 179 12.5 0 9 5.5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 1 . 1 4 0 179 12.5 0 9 5.5 4 0 179 12.5 0 8.4 5.5 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 8.4 5.5 4 0 179 12.5 1 . 1 4 0 179 12.5 0 8.9 1 4 0 179 12.5 0 9 5.5 4 0 179 12.5 0 9 5.5 3 0 179 12.5 0 8.9 1 3 0 179 12.5 1 . 1 3 0 179 12.5 0 9 5.5 3 0 179 12.5 0 8.9 1 3 0 179 12.5 1 . 1 3 0 179 12.5 0 8.9 1 3 0 179 12.5 0 9 5.5 3 0 179 12.5 1 . 1 3 0 179 12.5 1 . 1 3 0 179 12.5 0 9 5.5 3 0 179 12.5 0 8.9 1 3 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 7.5 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 7.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 7.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 7.5 2 0 179 12.5 1 . 7.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 136.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 136.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 8.9 1 2 0 179 12.5 1 . 136.5 2 0 179 12.5 1 . 136.5 2 0 179 12.5 0 8.9 1 2 0 179 12.5 0 9 1 2 0 179 12.5 1 . 1 2 0 179 12.5 1 . 1 2 0 179 12.5 0 8.9 1 2 0 179 end
0 Response to Margins 'not estimable' using Fixed Effects
Post a Comment