I am running on Stata 14.0 an ivregress 2sls estimation as in the following code.
Code:
. ivregress 2sls dmbel (rielmbel = gov soc env res dcpi lind dstocks i.code i.time), robust first First-stage regressions ----------------------- Number of obs = 2,747 F( 174, 2572) = 9.77 Prob > F = 0.0000 R-squared = 0.4741 Adj R-squared = 0.4385 Root MSE = 0.0850 ------------------------------------------------------------------------------ | Robust rielmbel | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- gov | -.0056843 .0007252 -7.84 0.000 -.0071063 -.0042622 soc | -.0017961 .0006894 -2.61 0.009 -.003148 -.0004443 env | .0083121 .0009661 8.60 0.000 .0064177 .0102065 res | -.0045355 .0010553 -4.30 0.000 -.0066048 -.0024663 dcpi | -.0275036 .0044332 -6.20 0.000 -.0361967 -.0188106 lind | -.15713 .0258762 -6.07 0.000 -.2078703 -.1063896 dstocks | .0008266 .0004389 1.88 0.060 -.000034 .0016872 | code | CHL | .0393731 .063514 0.62 0.535 -.0851706 .1639169 CHN | .9101593 .0773214 11.77 0.000 .7585408 1.061778 COL | -.301294 .0476558 -6.32 0.000 -.3947415 -.2078465 CZE | .1136015 .0721176 1.58 0.115 -.0278129 .255016 HUN | -.1895987 .0811023 -2.34 0.019 -.3486312 -.0305662 IDN | .0364302 .025311 1.44 0.150 -.0132017 .0860622 ISR | .0532919 .0848054 0.63 0.530 -.1130019 .2195858 KOR | .4274254 .0463959 9.21 0.000 .3364483 .5184025 MEX | .1617872 .034439 4.70 0.000 .0942562 .2293182 MYS | .1326777 .0602176 2.20 0.028 .0145979 .2507575 PER | -.3035272 .05881 -5.16 0.000 -.418847 -.1882074 PHL | -.2584554 .0476426 -5.42 0.000 -.3518772 -.1650336 POL | .2071764 .056128 3.69 0.000 .0971157 .3172371 ROU | -.2086394 .0610792 -3.42 0.001 -.3284088 -.0888699 RUS | .3532148 .0416844 8.47 0.000 .2714765 .4349532 THA | .1344817 .0526456 2.55 0.011 .0312496 .2377137 TUR | .0960361 .0388248 2.47 0.013 .0199051 .1721672 ZAF | .1614445 .0686339 2.35 0.019 .0268611 .2960278 | time | 566 | .0081651 .0540451 0.15 0.880 -.0978112 .1141413 567 | -.0018779 .0533686 -0.04 0.972 -.1065276 .1027719 568 | .0073689 .054315 0.14 0.892 -.0991367 .1138745 569 | .0131488 .0550796 0.24 0.811 -.094856 .1211535 570 | .0035239 .0526657 0.07 0.947 -.0997476 .1067955 571 | -.0417565 .0453115 -0.92 0.357 -.1306073 .0470943 572 | -.0351463 .045288 -0.78 0.438 -.1239509 .0536583 573 | -.0181831 .0485004 -0.37 0.708 -.1132868 .0769207 574 | -.0039052 .0499676 -0.08 0.938 -.101886 .0940755 575 | -.0285183 .0465499 -0.61 0.540 -.1197973 .0627608 576 | -.0143531 .0488801 -0.29 0.769 -.1102014 .0814952 577 | -.068227 .0438727 -1.56 0.120 -.1542564 .0178024 578 | -.08955 .0430002 -2.08 0.037 -.1738686 -.0052315 579 | -.1002657 .0420257 -2.39 0.017 -.1826734 -.017858 580 | -.05097 .0442849 -1.15 0.250 -.1378076 .0358676 581 | -.0502664 .0438877 -1.15 0.252 -.1363253 .0357925 582 | -.0913523 .042259 -2.16 0.031 -.1742173 -.0084872 583 | -.08904 .0439348 -2.03 0.043 -.1751913 -.0028888 584 | -.0976524 .0438337 -2.23 0.026 -.1836054 -.0116994 585 | -.14857 .0462526 -3.21 0.001 -.239266 -.057874 586 | -.3533309 .0547859 -6.45 0.000 -.4607599 -.2459019 587 | -.3797358 .0544885 -6.97 0.000 -.4865817 -.27289 588 | -.3462651 .0517457 -6.69 0.000 -.4477327 -.2447976 589 | -.3553977 .0476362 -7.46 0.000 -.4488069 -.2619885 590 | -.4102855 .0509847 -8.05 0.000 -.5102608 -.3103102 591 | -.3337814 .0460526 -7.25 0.000 -.4240852 -.2434775 592 | -.2324673 .0415684 -5.59 0.000 -.3139783 -.1509563 593 | -.1843035 .0421199 -4.38 0.000 -.2668959 -.101711 594 | -.1558125 .0424002 -3.67 0.000 -.2389546 -.0726705 595 | -.1271502 .0433097 -2.94 0.003 -.2120757 -.0422247 596 | -.1174798 .0435129 -2.70 0.007 -.2028037 -.0321559 597 | -.1053721 .0447938 -2.35 0.019 -.1932077 -.0175365 598 | -.1093318 .0434922 -2.51 0.012 -.194615 -.0240485 599 | -.1337709 .0408405 -3.28 0.001 -.2138544 -.0536873 600 | -.1107745 .0410948 -2.70 0.007 -.1913568 -.0301922 601 | -.1310213 .0413355 -3.17 0.002 -.2120755 -.0499672 602 | -.1349439 .0401814 -3.36 0.001 -.213735 -.0561528 603 | -.1136856 .040691 -2.79 0.005 -.193476 -.0338952 604 | -.1125739 .0415963 -2.71 0.007 -.1941396 -.0310083 605 | -.1450647 .0436493 -3.32 0.001 -.230656 -.0594734 606 | -.1481128 .0429361 -3.45 0.001 -.2323056 -.0639199 607 | -.1345606 .0461171 -2.92 0.004 -.2249911 -.0441301 608 | -.1421602 .0444082 -3.20 0.001 -.2292397 -.0550807 609 | -.1279889 .0423831 -3.02 0.003 -.2110974 -.0448804 610 | -.110785 .0429728 -2.58 0.010 -.1950499 -.0265202 611 | -.133421 .0418201 -3.19 0.001 -.2154253 -.0514166 612 | -.1118164 .0430845 -2.60 0.010 -.1963003 -.0273325 613 | -.1248219 .0419105 -2.98 0.003 -.2070036 -.0426401 614 | -.1235164 .0405959 -3.04 0.002 -.2031203 -.0439125 615 | -.123387 .0399894 -3.09 0.002 -.2018018 -.0449723 616 | -.1215721 .0400539 -3.04 0.002 -.2001134 -.0430309 617 | -.1318429 .0397651 -3.32 0.001 -.2098178 -.053868 618 | -.1403435 .0395989 -3.54 0.000 -.2179925 -.0626945 619 | -.137319 .0408709 -3.36 0.001 -.2174621 -.0571758 620 | -.1846433 .0424692 -4.35 0.000 -.2679206 -.1013659 621 | -.2501755 .0436816 -5.73 0.000 -.3358301 -.1645209 622 | -.2015664 .0417181 -4.83 0.000 -.2833709 -.1197619 623 | -.2395515 .0440191 -5.44 0.000 -.325868 -.153235 624 | -.2306571 .0431127 -5.35 0.000 -.3151963 -.1461179 625 | -.2230069 .0424552 -5.25 0.000 -.3062568 -.1397571 626 | -.1901461 .040798 -4.66 0.000 -.2701464 -.1101459 627 | -.1763518 .0416542 -4.23 0.000 -.258031 -.0946727 628 | -.1941324 .0431574 -4.50 0.000 -.2787592 -.1095055 629 | -.2383907 .0453307 -5.26 0.000 -.3272791 -.1495023 630 | -.205805 .0418966 -4.91 0.000 -.2879595 -.1236504 631 | -.1746416 .0412912 -4.23 0.000 -.255609 -.0936742 632 | -.1599838 .0409211 -3.91 0.000 -.2402255 -.0797421 633 | -.1301993 .0405216 -3.21 0.001 -.2096576 -.050741 634 | -.1302085 .0404654 -3.22 0.001 -.2095565 -.0508605 635 | -.1220317 .0404359 -3.02 0.003 -.201322 -.0427414 636 | -.1054495 .0400379 -2.63 0.008 -.1839592 -.0269398 637 | -.1181236 .0398405 -2.96 0.003 -.1962463 -.0400008 638 | -.1194951 .0402626 -2.97 0.003 -.1984455 -.0405447 639 | -.1323093 .0406713 -3.25 0.001 -.2120611 -.0525575 640 | -.1152404 .0400866 -2.87 0.004 -.1938457 -.0366351 641 | -.1202925 .0407074 -2.96 0.003 -.2001151 -.0404699 642 | -.162043 .0411493 -3.94 0.000 -.2427322 -.0813539 643 | -.1661865 .0417703 -3.98 0.000 -.2480934 -.0842797 644 | -.1807564 .0433515 -4.17 0.000 -.2657639 -.095749 645 | -.1551145 .041657 -3.72 0.000 -.2367992 -.0734298 646 | -.142005 .0419176 -3.39 0.001 -.2242007 -.0598093 647 | -.1529248 .0430962 -3.55 0.000 -.2374315 -.068418 648 | -.1507832 .0433217 -3.48 0.001 -.2357321 -.0658343 649 | -.1651797 .04394 -3.76 0.000 -.2513412 -.0790183 650 | -.1390598 .0411616 -3.38 0.001 -.2197729 -.0583466 651 | -.14292 .040973 -3.49 0.000 -.2232634 -.0625765 652 | -.1309518 .0410339 -3.19 0.001 -.2114146 -.0504889 653 | -.1148193 .0405231 -2.83 0.005 -.1942806 -.0353581 654 | -.1123831 .0408201 -2.75 0.006 -.1924268 -.0323395 655 | -.1212662 .0409699 -2.96 0.003 -.2016036 -.0409287 656 | -.1097958 .040625 -2.70 0.007 -.1894569 -.0301347 657 | -.1195196 .0413159 -2.89 0.004 -.2005353 -.0385038 658 | -.1135709 .0407567 -2.79 0.005 -.1934902 -.0336516 659 | -.1042169 .0409735 -2.54 0.011 -.1845613 -.0238726 660 | -.1255047 .0416624 -3.01 0.003 -.2072 -.0438095 661 | -.1425736 .0431596 -3.30 0.001 -.2272046 -.0579425 662 | -.117195 .0425727 -2.75 0.006 -.2006751 -.0337148 663 | -.1348688 .0435859 -3.09 0.002 -.2203358 -.0494018 664 | -.1280062 .0429813 -2.98 0.003 -.2122876 -.0437247 665 | -.1289821 .0431838 -2.99 0.003 -.2136607 -.0443035 666 | -.1323969 .04368 -3.03 0.002 -.2180484 -.0467454 667 | -.143292 .0440901 -3.25 0.001 -.2297477 -.0568363 668 | -.1713126 .0463701 -3.69 0.000 -.2622391 -.0803861 669 | -.2094114 .0526716 -3.98 0.000 -.3126944 -.1061283 670 | -.1659607 .047872 -3.47 0.001 -.2598324 -.072089 671 | -.1628071 .0478387 -3.40 0.001 -.2566134 -.0690008 672 | -.1601802 .0459658 -3.48 0.001 -.2503139 -.0700466 673 | -.1784725 .0474774 -3.76 0.000 -.2715702 -.0853747 674 | -.188288 .0470512 -4.00 0.000 -.28055 -.0960261 675 | -.1389032 .0445062 -3.12 0.002 -.2261747 -.0516316 676 | -.1319502 .0442777 -2.98 0.003 -.2187738 -.0451266 677 | -.1320015 .0436834 -3.02 0.003 -.2176596 -.0463434 678 | -.1142698 .0429019 -2.66 0.008 -.1983956 -.030144 679 | -.1127285 .0422778 -2.67 0.008 -.1956304 -.0298266 680 | -.0896584 .0420153 -2.13 0.033 -.1720456 -.0072712 681 | -.09995 .0430073 -2.32 0.020 -.1842824 -.0156177 682 | -.1025734 .0427267 -2.40 0.016 -.1863557 -.0187911 683 | -.1245426 .0423403 -2.94 0.003 -.207567 -.0415181 684 | -.1034273 .0416639 -2.48 0.013 -.1851255 -.021729 685 | -.0970144 .042589 -2.28 0.023 -.1805266 -.0135022 686 | -.0844257 .0421653 -2.00 0.045 -.167107 -.0017444 687 | -.075377 .0430377 -1.75 0.080 -.1597691 .0090152 688 | -.071149 .0430912 -1.65 0.099 -.155646 .013348 689 | -.0723727 .0428111 -1.69 0.091 -.1563205 .0115751 690 | -.0663081 .0416831 -1.59 0.112 -.1480439 .0154277 691 | -.0541647 .0410407 -1.32 0.187 -.1346408 .0263114 692 | -.0431412 .0416508 -1.04 0.300 -.1248138 .0385313 693 | -.0461507 .0423142 -1.09 0.276 -.1291241 .0368226 694 | -.0477742 .0430899 -1.11 0.268 -.1322686 .0367202 695 | -.0433186 .0439681 -0.99 0.325 -.1295351 .0428979 696 | -.0432889 .042812 -1.01 0.312 -.1272384 .0406607 697 | -.0307226 .0435008 -0.71 0.480 -.1160229 .0545776 698 | -.0407607 .0434061 -0.94 0.348 -.1258752 .0443538 699 | -.0391918 .0442075 -0.89 0.375 -.1258778 .0474942 700 | -.041366 .0440631 -0.94 0.348 -.1277688 .0450369 701 | -.0579426 .0439573 -1.32 0.188 -.1441379 .0282526 702 | -.0648714 .0447735 -1.45 0.147 -.1526671 .0229243 703 | -.0469431 .0443466 -1.06 0.290 -.1339017 .0400156 704 | -.078142 .0429083 -1.82 0.069 -.1622804 .0059963 705 | -.060707 .0430631 -1.41 0.159 -.1451488 .0237349 706 | -.0827343 .0445174 -1.86 0.063 -.1700279 .0045593 707 | -.0747965 .044787 -1.67 0.095 -.1626186 .0130256 708 | -.0777714 .0442149 -1.76 0.079 -.1644718 .008929 709 | -.0472163 .0449729 -1.05 0.294 -.135403 .0409704 710 | -.0371848 .0455833 -0.82 0.415 -.1265684 .0521988 711 | -.0577427 .0431851 -1.34 0.181 -.1424238 .0269383 712 | -.0428744 .0435946 -0.98 0.325 -.1283585 .0426097 713 | -.0706304 .0436904 -1.62 0.106 -.1563024 .0150415 714 | -.0501905 .0446396 -1.12 0.261 -.1377236 .0373426 | _cons | 3.718266 .6176449 6.02 0.000 2.507135 4.929398 ------------------------------------------------------------------------------ Instrumental variables (2SLS) regression Number of obs = 2,747 Wald chi2(1) = 18.52 Prob > chi2 = 0.0000 R-squared = 0.0317 Root MSE = .04316 ------------------------------------------------------------------------------ | Robust dmbel | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- rielmbel | .0618787 .0143775 4.30 0.000 .0336994 .090058 _cons | .0007128 .0008038 0.89 0.375 -.0008626 .0022882 ------------------------------------------------------------------------------ Instrumented: rielmbel Instruments: gov soc env res dcpi lind dstocks 2.code 3.code 4.code 5.code 6.code 7.code 8.code 9.code 10.code 11.code 12.code 13.code 14.code 15.code 16.code 17.code 18.code 19.code 566.time 567.time 568.time 569.time 570.time 571.time 572.time 573.time 574.time 575.time 576.time 577.time 578.time 579.time 580.time 581.time 582.time 583.time 584.time 585.time 586.time 587.time 588.time 589.time 590.time 591.time 592.time 593.time 594.time 595.time 596.time 597.time 598.time 599.time 600.time 601.time 602.time 603.time 604.time 605.time 606.time 607.time 608.time 609.time 610.time 611.time 612.time 613.time 614.time 615.time 616.time 617.time 618.time 619.time 620.time 621.time 622.time 623.time 624.time 625.time 626.time 627.time 628.time 629.time 630.time 631.time 632.time 633.time 634.time 635.time 636.time 637.time 638.time 639.time 640.time 641.time 642.time 643.time 644.time 645.time 646.time 647.time 648.time 649.time 650.time 651.time 652.time 653.time 654.time 655.time 656.time 657.time 658.time 659.time 660.time 661.time 662.time 663.time 664.time 665.time 666.time 667.time 668.time 669.time 670.time 671.time 672.time 673.time 674.time 675.time 676.time 677.time 678.time 679.time 680.time 681.time 682.time 683.time 684.time 685.time 686.time 687.time 688.time 689.time 690.time 691.time 692.time 693.time 694.time 695.time 696.time 697.time 698.time 699.time 700.time 701.time 702.time 703.time 704.time 705.time 706.time 707.time 708.time 709.time 710.time 711.time 712.time 713.time 714.time . estat overid Test of overidentifying restrictions: Score chi2(173) = 788.538 (p = 0.0000) . estat endogenous Tests of endogeneity Ho: variables are exogenous Robust score chi2(1) = .831163 (p = 0.3619) Robust regression F(1,2744) = .831294 (p = 0.3620) . end of do-file .
I would like to ask you three questions, please.
- Is including time dummies in the first step a legitimate choice? If omitted, the second step regression would lose significance. However, I am not sure about the theoretical soundness of this approach.
- The estat overid test rejects the null hypothesis of exogenous instruments. Given the large number of instruments, I suspect many of them are actually endogenous, but some may not. So how can I test for exogeneity on a subset of instruments?
- The estat endogenous test fails to reject the null hypothesis of exogenous independent variable, so that OLS would be more efficient than 2SLS. However, I know that the endogeneity test is only meaningful in the presence of valid instruments. Since the test of overidentifying restrictions rejects the null of exogenous instruments, I would conclude I am not allowed to opt for OLS. Please can you confirm my interpretation is correct? (Below the output of the OLS regression for comparison purposes.)
Code:
. reg dmbel rielmbel, robust Linear regression Number of obs = 2,968 F(1, 2966) = 30.56 Prob > F = 0.0000 R-squared = 0.0349 Root MSE = .04341 ------------------------------------------------------------------------------ | Robust dmbel | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- rielmbel | .0728101 .0131701 5.53 0.000 .0469865 .0986336 _cons | .0010476 .000795 1.32 0.188 -.0005113 .0026065 ------------------------------------------------------------------------------ . end of do-file .
Best,
Daniele Veggiato
0 Response to Time dummies in IV regression and interpretation of post-estimation
Post a Comment