Dear Stata experts,

I have a repeated measures study design where subjects were followed over 5 visits and their HbA1c was measured throughout. There are some missing HbA1c values. I am able to generate the mixed commands, and plotted the graphs. Below is what I've obtained thus far.

Code:
. mixed hba1c_ j##track || record_id:, var reml

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log restricted-likelihood = -1063.9138  
Iteration 1:   log restricted-likelihood = -1063.9138  

Computing standard errors:

Mixed-effects REML regression                   Number of obs     =        547
Group variable: record_id                       Number of groups  =        145

                                                Obs per group:
                                                              min =          2
                                                              avg =        3.8
                                                              max =          5

                                                Wald chi2(9)      =     327.99
Log restricted-likelihood = -1063.9138          Prob > chi2       =     0.0000

------------------------------------------------------------------------------
      hba1c_ |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           j |
          1  |  -2.531488   .3016913    -8.39   0.000    -3.122792   -1.940183
          2  |   -3.01946   .4786132    -6.31   0.000    -3.957525   -2.081395
          3  |  -2.524065   .4322982    -5.84   0.000    -3.371354   -1.676776
          4  |  -2.323791   .4422862    -5.25   0.000    -3.190656   -1.456926
             |
       track |
        yes  |   .3795789   .3109946     1.22   0.222    -.2299593    .9891171
             |
     j#track |
      1#yes  |   .2095378   .3739649     0.56   0.575    -.5234199    .9424954
      2#yes  |   .4563514   .5540576     0.82   0.410    -.6295816    1.542284
      3#yes  |  -.2356258   .4859038    -0.48   0.628     -1.18798    .7167281
      4#yes  |  -.6247749   .4981435    -1.25   0.210    -1.601118    .3515685
             |
       _cons |     10.732   .2517275    42.63   0.000     10.23862    11.22538
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
record_id: Identity          |
                  var(_cons) |   .9210646   .1912886       .613071    1.383787
-----------------------------+------------------------------------------------
               var(Residual) |   2.247272   .1607321      1.953327    2.585451
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 48.43         Prob >= chibar2 = 0.0000


. margins, over(j track)  

Predictive margins                              Number of obs     =        547

Expression   : Linear prediction, fixed portion, predict()
over         : j track

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     j#track |
       0#no  |     10.732   .2517275    42.63   0.000     10.23862    11.22538
      0#yes  |   11.11158   .1826223    60.84   0.000     10.75365    11.46951
       1#no  |   8.200512   .2539557    32.29   0.000     7.702768    8.698257
      1#yes  |   8.789629   .1867404    47.07   0.000     8.423625    9.155634
       2#no  |    7.71254   .4500516    17.14   0.000     6.830455    8.594625
      2#yes  |    8.54847   .2528818    33.80   0.000     8.052831     9.04411
       3#no  |   8.207935   .4004468    20.50   0.000     7.423073    8.992796
      3#yes  |   8.351888   .1877782    44.48   0.000     7.983849    8.719926
       4#no  |   8.408209   .4112091    20.45   0.000     7.602254    9.214164
      4#yes  |   8.163013    .196392    41.56   0.000     7.778092    8.547935
------------------------------------------------------------------------------

. marginsplot, x(j) title("Overall HbA1c trend split by Tracked group") ///
>         xtitle("Visit") ytitle("Mean HbA1c")

  Variables that uniquely identify margins: j track
[ATTACH]temp_19404_1597834465330_490[/ATTACH]

What I'm struggling with is to obtain the slopes between each visit. I read from the Stata manual that the simple effects correspond to the slopes of each of the lines. So I attempted the following:

Code:
. contrast ar.j@track, pveffects

Contrasts of marginal linear predictions

Margins      : asbalanced

-------------------------------------------------
              |         df        chi2     P>chi2
--------------+----------------------------------
hba1c_        |
      j@track |
 (1 vs 0) no  |          1       70.41     0.0000
(1 vs 0) yes  |          1      110.41     0.0000
 (2 vs 1) no  |          1        1.03     0.3105
(2 vs 1) yes  |          1        0.73     0.3937
 (3 vs 2) no  |          1        0.75     0.3855
(3 vs 2) yes  |          1        0.48     0.4866
 (4 vs 3) no  |          1        0.16     0.6935
(4 vs 3) yes  |          1        0.66     0.4160
       Joint  |          8      327.98     0.0000
-------------------------------------------------

------------------------------------------------------
              |   Contrast   Std. Err.      z    P>|z|
--------------+---------------------------------------
hba1c_        |
      j@track |
 (1 vs 0) no  |  -2.531488   .3016913    -8.39   0.000
(1 vs 0) yes  |   -2.32195   .2209798   -10.51   0.000
 (2 vs 1) no  |  -.4879724   .4811204    -1.01   0.310
(2 vs 1) yes  |  -.2411588   .2827586    -0.85   0.394
 (3 vs 2) no  |   .4953947   .5709149     0.87   0.386
(3 vs 2) yes  |  -.1965825   .2825823    -0.70   0.487
 (4 vs 3) no  |   .2002747   .5081325     0.39   0.693
(4 vs 3) yes  |  -.1888744   .2322142    -0.81   0.416
------------------------------------------------------
Looking at the Contrast values, it seems to be reflect the direction of the graph, but I'm not sure if these values are indeed the slope. However, the p-values are not what I'm after. What I'm interested in comparing is if the slope at each time point differs from the previous time-point and if this difference is statistically significant. Is it possible for this to be done?

Thanks so much!