Iam currently analysing impact of access to microfinance institution to consumption smoothing during health shock. My data is in panel for year 2007 and 2014. For dependent variable, i use delta log consumption and independent variable is interaction betweet health shock dummy and distance dummy (i divided distance dummy into three independent variables for 0-1km, 1-10km, >10km)
My data
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(delta_cons distance_1km distance_10km distance_more10km) 12.720392 0 0 1 12.720392 0 0 1 12.407311 0 0 1 12.407311 0 0 1 -12.83119 0 0 1 -12.83119 0 0 1 13.577685 0 0 1 13.577685 0 0 1 -12.599562 0 0 1 -12.599562 0 0 1 -13.65112 0 0 1 -13.65112 0 0 1 13.66916 0 0 1 13.66916 0 0 1 12.526948 0 0 1 12.526948 0 0 1 0 0 0 1 0 0 0 1 -12.231578 0 0 1 -12.231578 0 0 1 12.964393 0 0 1 12.964393 0 0 1 -12.174324 0 0 1 -12.174324 0 0 1 -10.23063 0 0 1 -10.23063 0 0 1 13.003392 0 0 1 13.003392 0 0 1 12.570395 0 0 1 12.570395 0 0 1 13.041876 0 0 1 13.041876 0 0 1 -12.92658 0 0 1 -12.92658 0 0 1 13.706965 0 0 1 13.706965 0 0 1 13.080065 0 0 1 13.080065 0 0 1 13.092076 0 0 1 13.092076 0 0 1 12.846226 0 0 1 12.846226 0 0 1 13.610765 0 0 1 13.610765 0 0 1 13.02033 0 0 1 13.02033 0 0 1 -12.239265 0 0 1 -12.239265 0 0 1 14.36122 0 0 1 14.36122 0 0 1 14.187793 0 0 1 14.187793 0 0 1 13.305684 0 0 1 13.305684 0 0 1 13.646796 0 0 1 13.646796 0 0 1 13.288548 0 0 1 13.288548 0 0 1 -12.888692 0 0 1 -12.888692 0 0 1 0 0 0 1 0 0 0 1 14.01054 0 0 1 14.01054 0 0 1 14.759644 0 0 1 14.759644 0 0 1 14.191398 0 0 1 14.191398 0 0 1 13.070982 0 0 1 13.070982 0 0 1 13.008448 0 0 1 13.008448 0 0 1 13.489578 0 0 1 13.489578 0 0 1 0 0 0 1 0 0 0 1 -12.601674 0 0 1 -12.601674 0 0 1 -12.182975 0 0 1 -12.182975 0 0 1 13.390735 0 0 1 13.390735 0 0 1 13.939254 0 0 1 13.939254 0 0 1 12.820853 0 0 1 12.820853 0 0 1 13.465385 0 0 1 13.465385 0 0 1 13.58884 0 0 1 13.58884 0 0 1 12.75724 0 0 1 12.75724 0 0 1 13.091675 0 0 1 13.091675 0 0 1 13.73929 0 0 1 13.73929 0 0 1 12.679196 0 0 1 12.679196 0 0 1 14.264695 0 0 1 14.264695 0 0 1 end
Code:
xtreg delta_cons i.distance_1km##i.adl i.distance_10km##i.adl i.distance_more10km##i.adl, re
HTML Code:
note: 1.distance_more10km omitted because of collinearity note: 1.distance_more10km#1.adl omitted because of collinearity Random-effects GLS regression Number of obs = 12,270 Group variable: pidlinks Number of groups = 6,135 R-sq: Obs per group: within = 0.0000 min = 2 between = 0.0000 avg = 2.0 overall = 0.0000 max = 2 Wald chi2(0) = . corr(u_i, X) = 0 (assumed) Prob > chi2 = . --------------------------------------------------------------------------------------- delta_cons | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- 1.distance_1km | 0 (omitted) 1.adl | 0 (omitted) | distance_1km#adl | 1 1 | 0 (omitted) | 1.distance_10km | 0 (omitted) | distance_10km#adl | 1 1 | 0 (omitted) | 1.distance_more10km | 0 (omitted) | distance_more10km#adl | 1 1 | 0 (omitted) | _cons | 0 (omitted) ----------------------+---------------------------------------------------------------- sigma_u | 11.058928 sigma_e | 0 rho | 1 (fraction of variance due to u_i) --------------------------------------------------------------------------------------- .
Then i tried to use pooled least square to analyse my data
Code:
reg delta_cons i.distance_1km##i.adl i.distance_10km##i.adl i.distance_more10km##i.adl
HTML Code:
note: 1.distance_more10km omitted because of collinearity note: 1.distance_more10km#1.adl omitted because of collinearity Source | SS df MS Number of obs = 12,270 -------------+---------------------------------- F(5, 12264) = 347.26 Model | 212248.045 5 42449.609 Prob > F = 0.0000 Residual | 1499151.93 12,264 122.240046 R-squared = 0.1240 -------------+---------------------------------- Adj R-squared = 0.1237 Total | 1711399.97 12,269 139.489769 Root MSE = 11.056 --------------------------------------------------------------------------------------- delta_cons | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- 1.distance_1km | 1.188385 .6092312 1.95 0.051 -.0058037 2.382575 1.adl | 9.74406 .2532389 38.48 0.000 9.247671 10.24045 | distance_1km#adl | 1 1 | -1.330926 1.071027 -1.24 0.214 -3.430307 .7684549 | 1.distance_10km | .6568737 .351311 1.87 0.062 -.0317511 1.345499 | distance_10km#adl | 1 1 | -.8004681 .7137334 -1.12 0.262 -2.199498 .5985616 | 1.distance_more10km | 0 (omitted) | distance_more10km#adl | 1 1 | 0 (omitted) | _cons | 3.212224 .1257526 25.54 0.000 2.965729 3.458719 --------------------------------------------------------------------------------------- .
0 Response to Problem with omitted variables during regression
Post a Comment