I face the following issue. I am running a logit regression on survey data (individual women from two periods (pre and post 2009) and in two treatment areas (non-BH and BH). This is done in a difference-in-difference setting so at the end I am explicitly interested in the interaction effect.
My function is specified in three ways (basic model, basic+state dummies, basic+state dummies+control variables). By including a factor variable i.surveystate I want to account for state fixed effects. When running my logit regression everything works out fine. As soon as I try to make use of any margins command (e.g. margins, dydx(*); margins, at()) Stata states the marginal effect for the indicator BH (i.BH (dummy)) and for all the different values of the state indicator (i.surveyystate (factor)) are "not estimable". This only happens in model 2 and 3 while Stata supplies me with the marginal effect of BH in model 1. While Stata says the marginal effects for BH and surveystates are not estimable in model 2 and 3 it does give me the marginal effect of other dummy/factor variables though (e.g. muslim, literacy, wealthindex). Below you can find the three model codes I have used as well as the output from model 1 and model 3. Here my issues are shown. Based on this problem I am also not able to use many other commands like mcp, marginsplot etc. as the result of margins for BH is always non estimable. Later I also want to run a model with a binary#continous interaction and face the same issue. This happens no matter if I calculate the interaction effect by hand post2009TPXBH=(post2009TP*BH) or use the factor and # notation (Model 1 as an example of pre-calculated interaction effect, model 3 example of factor notation to crate interaction effect).
Any held would be greatly appreciated!
Kind regards Caspar
Model 1:
Code:
svy:logit teenpreg i.BH i.post2009TP i.post2009TPXBH margins, dydx(*) vce(unconditional)
Code:
svy:logit teenpreg i.BH i.post2009TP i.post2009TP#i.BH i.surveystate margins, dydx(*) vce(unconditional)
Code:
svy: logit teenpreg i.BH i.post2009TP i.post2009TP#i.BH i.muslim i.urban i.kanuri i.hhheadmale i.literacy i.wealthindex i.edulevel c.eduyears i.edulevelpartner c.eduyearspartner i.polygamoushh i.surveystate margins, dydx(*) vce(unconditional)
Code:
. svy:logit teenpreg i.BH i.post2009TP i.post2009TPXBH (running logit on estimation sample) Survey: Logistic regression Number of strata = 148 Number of obs = 22,035 Number of PSUs = 2,269 Population size = 22,012,938,401 Design df = 2,121 F( 3, 2119) = 124.16 Prob > F = 0.0000 --------------------------------------------------------------------------------- | Linearized teenpreg | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- 1.BH | 1.28489 .0830362 15.47 0.000 1.12205 1.447731 1.post2009TP | -.2222882 .0485641 -4.58 0.000 -.3175264 -.1270499 1.post2009TPXBH | -.444609 .1087976 -4.09 0.000 -.6579702 -.2312479 _cons | -.341325 .0321343 -10.62 0.000 -.4043431 -.2783069 ---------------------------------------------------------------------------------
Code:
. margins, dydx(*) vce(unconditional) Average marginal effects Number of obs = 22,035 Expression : Pr(teenpreg), predict() dy/dx w.r.t. : 1.BH 1.post2009TP 1.post2009TPXBH --------------------------------------------------------------------------------- | Linearized | dy/dx Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- 1.BH | .3059899 .0175181 17.47 0.000 .2716355 .3403444 1.post2009TP | -.0521801 .0113664 -4.59 0.000 -.0744706 -.0298896 1.post2009TPXBH | -.0996184 .0229866 -4.33 0.000 -.144697 -.0545398 --------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
Code:
. svy: logit teenpreg i.BH i.post2009TP i.post2009TP#i.BH i.muslim i.urban i.kanuri i.hhheadmale i.literacy i.wealthindex i.edulevel c.eduyears i.edulevelpartner c.eduyearspartner i.polygamoushh i.surveystate (running logit on estimation sample) note: 1011.surveystate omitted because of collinearity Survey: Logistic regression Number of strata = 148 Number of obs = 14,387 Number of PSUs = 2,179 Population size = 14,146,244,185 Design df = 2,031 F( 52, 1980) = 31.06 Prob > F = 0.0000 ----------------------------------------------------------------------------------- | Linearized teenpreg | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- 1.BH | .2549566 .1734003 1.47 0.142 -.0851043 .5950176 1.post2009TP | -.3188818 .0525346 -6.07 0.000 -.4219091 -.2158545 | post2009TP#BH | 1 1 | -.0673073 .1045352 -0.64 0.520 -.2723146 .1377 | 1.muslim | .3358439 .0803647 4.18 0.000 .1782381 .4934497 1.urban | .0831391 .0599677 1.39 0.166 -.0344655 .2007437 1.kanuri | -.2364794 .158307 -1.49 0.135 -.5469404 .0739816 1.hhheadmale | .1217891 .0831064 1.47 0.143 -.0411937 .2847718 1.literacy | .0651338 .0817359 0.80 0.426 -.0951611 .2254287 | wealthindex | poorer | .0918043 .0657692 1.40 0.163 -.0371779 .2207864 middle | -.0885208 .0767987 -1.15 0.249 -.2391332 .0620915 richer | -.2907834 .0869054 -3.35 0.001 -.4612165 -.1203504 richest | -.8785281 .1157358 -7.59 0.000 -1.105501 -.6515549 | 1.edulevel | -.1782213 .1062559 -1.68 0.094 -.3866034 .0301607 eduyears | -.0665808 .0120163 -5.54 0.000 -.0901464 -.0430153 1.edulevelpartner | .1496471 .1040683 1.44 0.151 -.0544445 .3537388 eduyearspartner | -.0227653 .0111104 -2.05 0.041 -.0445543 -.0009763 1.polygamoushh | -.0330811 .0575886 -0.57 0.566 -.14602 .0798577 | surveystate | zamfara | -.1928214 .151785 -1.27 0.204 -.490492 .1048492 katsina | .2620451 .1615701 1.62 0.105 -.0548152 .5789055 jigawa | .3076793 .1573823 1.95 0.051 -.0009681 .6163268 yobe | -.0157629 .1642379 -0.10 0.924 -.3378553 .3063295 borno | .0095577 .1618743 0.06 0.953 -.3078993 .3270147 adamawa | -.2877648 .1631481 -1.76 0.078 -.6077198 .0321902 gombe | .0768753 .1462841 0.53 0.599 -.2100072 .3637578 bauchi | .3715389 .1514305 2.45 0.014 .0745636 .6685142 kano | .0891833 .1387662 0.64 0.520 -.1829557 .3613223 kaduna | 0 (omitted) kebbi | -.0766893 .1538785 -0.50 0.618 -.3784654 .2250869 niger | -.3141513 .1534187 -2.05 0.041 -.6150257 -.0132768 abuja | -.4034342 .1915664 -2.11 0.035 -.7791213 -.027747 nasarawa | -.0566398 .2138995 -0.26 0.791 -.4761251 .3628455 plateau | -.32141 .1756258 -1.83 0.067 -.6658354 .0230155 taraba | .1213225 .1683685 0.72 0.471 -.2088706 .4515155 benue | -.0591002 .1748634 -0.34 0.735 -.4020306 .2838302 kogi | .432422 .2098261 2.06 0.039 .0209253 .8439188 kwara | -.4152658 .19115 -2.17 0.030 -.7901363 -.0403952 oyo | -.0257761 .1844987 -0.14 0.889 -.3876026 .3360503 osun | -.6566143 .1752572 -3.75 0.000 -1.000317 -.3129118 ekiti | .0372496 .2635448 0.14 0.888 -.4795967 .5540958 ondo | -.2915482 .2125072 -1.37 0.170 -.708303 .1252067 edo | -.3771684 .2374049 -1.59 0.112 -.8427508 .088414 anambra | .0657958 .1944728 0.34 0.735 -.3155912 .4471828 enugu | -.2516204 .1999433 -1.26 0.208 -.6437357 .1404949 ebonyi | -.0660226 .1995881 -0.33 0.741 -.4574413 .3253961 cross river | .4106171 .2347734 1.75 0.080 -.0498048 .8710389 akwa ibom | .0735537 .213957 0.34 0.731 -.3460444 .4931518 abia | -.3390893 .2490943 -1.36 0.174 -.8275962 .1494177 imo | -.618356 .2192515 -2.82 0.005 -1.048337 -.1883747 rivers | -.0649557 .2182536 -0.30 0.766 -.49298 .3630687 bayelsa | .6023436 .1887087 3.19 0.001 .2322609 .9724263 delta | .0971328 .2320194 0.42 0.676 -.357888 .5521536 lagos | -.5527324 .2374296 -2.33 0.020 -1.018363 -.0871015 ogun | -.3748587 .1993162 -1.88 0.060 -.7657442 .0160268 | _cons | 1.085254 .1637543 6.63 0.000 .7641102 1.406398 -----------------------------------------------------------------------------------
Code:
. margins, dydx(*) vce(unconditional) Average marginal effects Number of obs = 14,387 Expression : Pr(teenpreg), predict() dy/dx w.r.t. : 1.BH 1.post2009TP 1.muslim 1.urban 1.kanuri 1.hhheadmale 1.literacy 2.wealthindex 3.wealthindex 4.wealthindex 5.wealthindex 1.edulevel eduyears 1.edulevelpartner eduyearspartner 1.polygamoushh 1002.surveystate 1003.surveystate 1004.surveystate 1005.surveystate 1006.surveystate 1007.surveystate 1008.surveystate 1009.surveystate 1010.surveystate 1011.surveystate 1012.surveystate 1013.surveystate 1014.surveystate 1015.surveystate 1016.surveystate 1017.surveystate 1018.surveystate 1019.surveystate 1020.surveystate 1021.surveystate 1022.surveystate 1023.surveystate 1024.surveystate 1025.surveystate 1026.surveystate 1027.surveystate 1028.surveystate 1029.surveystate 1030.surveystate 1031.surveystate 1032.surveystate 1033.surveystate 1034.surveystate 1035.surveystate 1036.surveystate 1037.surveystate ----------------------------------------------------------------------------------- | Linearized | dy/dx Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- 1.BH | . (not estimable) 1.post2009TP | -.0649622 .0087651 -7.41 0.000 -.0821517 -.0477727 1.muslim | .0665069 .0163947 4.06 0.000 .0343547 .0986591 1.urban | .0157526 .011258 1.40 0.162 -.0063258 .037831 1.kanuri | -.0462524 .031588 -1.46 0.143 -.1082006 .0156958 1.hhheadmale | .0235927 .0162881 1.45 0.148 -.0083504 .0555359 1.literacy | .0123473 .0153524 0.80 0.421 -.0177609 .0424555 | wealthindex | poorer | .0175353 .0125973 1.39 0.164 -.0071697 .0422404 middle | -.0173779 .0150855 -1.15 0.249 -.0469626 .0122067 richer | -.0586335 .0176686 -3.32 0.001 -.093284 -.0239831 richest | -.1865903 .0255393 -7.31 0.000 -.2366762 -.1365044 | 1.edulevel | -.0350133 .0214133 -1.64 0.102 -.0770077 .0069811 eduyears | -.0127354 .0022819 -5.58 0.000 -.0172106 -.0082602 1.edulevelpartner | .0281589 .0192538 1.46 0.144 -.0096004 .0659182 eduyearspartner | -.0043545 .0021267 -2.05 0.041 -.0085253 -.0001837 1.polygamoushh | -.0063313 .0110293 -0.57 0.566 -.0279613 .0152987 | surveystate | zamfara | . (not estimable) katsina | . (not estimable) jigawa | . (not estimable) yobe | . (not estimable) borno | . (not estimable) adamawa | . (not estimable) gombe | . (not estimable) bauchi | . (not estimable) kano | . (not estimable) kaduna | . (not estimable) kebbi | . (not estimable) niger | . (not estimable) abuja | . (not estimable) nasarawa | . (not estimable) plateau | . (not estimable) taraba | . (not estimable) benue | . (not estimable) kogi | . (not estimable) kwara | . (not estimable) oyo | . (not estimable) osun | . (not estimable) ekiti | . (not estimable) ondo | . (not estimable) edo | . (not estimable) anambra | . (not estimable) enugu | . (not estimable) ebonyi | . (not estimable) cross river | . (not estimable) akwa ibom | . (not estimable) abia | . (not estimable) imo | . (not estimable) rivers | . (not estimable) bayelsa | . (not estimable) delta | . (not estimable) lagos | . (not estimable) ogun | . (not estimable) ----------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
0 Response to Logit estimation - Margins - not estimable
Post a Comment