I have a logistic regression model where the exposure is concentration of a metal (Cu) in blood. Such exposures are typically log transformed, as is the case in my analysis (natural log). However, when I look at the output, the OR and 95% CI seem blown up:
Code:
Logistic regression Number of obs = 1,057 LR chi2(10) = 104.01 Prob > chi2 = 0.0000 Log likelihood = -336.15374 Pseudo R2 = 0.1340 ---------------------------------------------------------------------------------- CP | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- logCu | 28.24988 18.772 5.03 0.000 7.680589 103.9055
Array
I also tried with Cu untransformed, which I think looks better:
Code:
Logistic regression Number of obs = 1,057 LR chi2(10) = 104.23 Prob > chi2 = 0.0000 Log likelihood = -336.04232 Pseudo R2 = 0.1343 ---------------------------------------------------------------------------------- CP | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- Cu_ug_L | 1.002026 .0004019 5.05 0.000 1.001238 1.002814
Array
How to decide whether to log transform or not?
Best,
Kjell Weyde
0 Response to Log transformation of independent variable in logistic regression
Post a Comment