Hi everyone,

A few days ago i made a post and some of my questions answered very well.
But there's still a lil bit of confusion in Fixed Effect Model particularly F-test for Individual Effect Dummies (testparm) with Fixed Effect Robust Standard Error.
So here it is:

After using vce(robust) option for xtreg, fe command, i couldn't get my F-test (joint test) for my individual effect dummies (u_i) that i included in my model. I know that stata omits it because someone explained it to me. But, i still want to report it on my paper, because i think it could be necesarry (or it couldn't) to report F test for u_i, to provide the reasons why i included it in my model.
I don't know is it a right assumption or not, but i assumed that we could choose to pooled or not to pooled the data, to include or not to include individiual and time effect based on these F test (F test, for u_i (time invariant effect) and δ_t (for time variant effect)).

So my question is:
How to conduct F test (that omits) for individual effect (u_i) in fixed effect with robust standard error (xtreg, fe vce(robust))?

here is how i did fixed effect model with robust SE. i still could do F test for time effect (that i assumed as δ_t or dummy variables for time effect) by doing testparm over my year dummy variables.

Code:
. xtreg Y X1 X2 i.year, fe vce(robust)

Fixed-effects (within) regression               Number of obs     =        222
Group variable: year                            Number of groups  =         74

R-sq:                                           Obs per group:
     within  = 0.5916                                         min =          3
     between = 0.6470                                         avg =        3.0
     overall = 0.6243                                         max =          3

                                                F(4,73)           =     100.72
corr(u_i, Xb)  = 0.1511                         Prob > F          =     0.0000

                                  (Std. Err. adjusted for 74 clusters in id)
------------------------------------------------------------------------------
             |               Robust
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .8808422   .1626354     5.42   0.000     .5567103    1.204974
          X2 |   16.65939   13.84521     1.20   0.233    -10.93408    44.25285
             |
       year |
       2017  |  -.5542752   .3520155    -1.57   0.120    -1.255841    .1472906
       2018  |  -2.224763    .567658    -3.92   0.000    -3.356104   -1.093422
             |
       _cons |  -.1550369   1.315367    -0.12   0.906    -2.776559    2.466485
-------------+----------------------------------------------------------------
     sigma_u |  2.9370361
     sigma_e |  2.7763652
         rho |  .52809954   (fraction of variance due to u_i)
------------------------------------------------------------------------------

. testparm i.year

 ( 1)  2017.year = 0
 ( 2)  2018.year = 0

       F(  2,    73) =    7.83
            Prob > F =    0.0008
i've got an idea about using the reg command with addition of individual and time dummies. But because i read that in reg. command, robust and cluster(id) options using a different method, so if anybody could confirm which one should i choose and is it a right (or wrong) thing to do?

Code:
. reg Y X1 X2 i.id i.year, vce(robust)

Linear regression                               Number of obs     =        222
                                                F(77, 144)        =      44.20
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8589
                                                Root MSE          =     2.7764

------------------------------------------------------------------------------
             |               Robust
           Y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          X1 |   .8808422    .166491     5.29   0.000     .5517603    1.209924
          X2 |   16.65939   12.42937     1.34   0.182    -7.908193    41.22696
             |
        id |
       APLN  |   .2947118   1.225192     0.24   0.810    -2.126972    2.716396
       ASDM  |   1.050584   1.462409     0.72   0.474    -1.839978    3.941145
       ASII  |     2.8694   2.413574     1.19   0.236     -1.90121     7.64001
       ASJT  |    2.31474   1.607534     1.44   0.152    -.8626728    5.492152
       ASMI  |   4.015512   1.669058     2.41   0.017      .716494    7.314531
       ASRI  |  -3.831059   .9604417    -3.99   0.000    -5.729445   -1.932674
       ASRM  |   2.211627   1.556897     1.42   0.158    -.8656974    5.288952
       BACA  |  -.0261848   .7748567    -0.03   0.973    -1.557747    1.505378
       BAPA  |   1.378856   1.827293     0.75   0.452    -2.232926    4.990638
       BBCA  |   .0173037   .6407342     0.03   0.978    -1.249156    1.283763
       BBMD  |   .3834314    .738184     0.52   0.604    -1.075645    1.842507
       BBNI  |   .2716186   .7533377     0.36   0.719     -1.21741    1.760647
       BBRI  |   .2827238   .6037333     0.47   0.640    -.9106003    1.476048
       BBTN  |   -.077315   .8124557    -0.10   0.924    -1.683195    1.528565
       BCIP  |   2.590771   1.405957     1.84   0.067    -.1882089    5.369752
       BDMN  |   .4528766   .9091776     0.50   0.619    -1.344181    2.249934
       BEST  |  -2.037454   1.330063    -1.53   0.128    -4.666422    .5915147
       BINA  |  -.1135588   .7325616    -0.16   0.877    -1.561522    1.334404
       BJBR  |    .561522    .830212     0.68   0.500    -1.079454    2.202498
       BJTM  |   .7062759   .9025418     0.78   0.435    -1.077666    2.490217
       BKSL  |  -1.372539   .6198285    -2.21   0.028    -2.597676   -.1474013
       BMRI  |   .3669541   .8332335     0.44   0.660    -1.279994    2.013903
       BNBA  |   .3175581   .7390014     0.43   0.668    -1.143134     1.77825
       BNGA  |   .2506866   .7081542     0.35   0.724    -1.149033    1.650406
       BNII  |  -.0686958   .7415254    -0.09   0.926    -1.534376    1.396985
       BOLT  |   2.443337   4.159148     0.59   0.558    -5.777531    10.66421
       BRAM  |   2.319903    1.84863     1.25   0.212    -1.334053    5.973858
       BSDE  |   1.708504   1.436532     1.19   0.236    -1.130908    4.547917
       COWL  |  -4.949813   1.340089    -3.69   0.000    -7.598599   -2.301026
       CTRA  |  -.0605993   .8110554    -0.07   0.941    -1.663711    1.542513
       DART  |  -1.910334   .9455116    -2.02   0.045    -3.779209   -.0414595
       DILD  |   .4385749    .690611     0.64   0.526    -.9264696    1.803619
       DMAS  |  -.8064493   1.466592    -0.55   0.583    -3.705279     2.09238
       DUTI  |   2.279153   .8200434     2.78   0.006     .6582761    3.900031
       FMII  |  -5.050991   3.634907    -1.39   0.167    -12.23566    2.133676
       GMTD  |   1.609945   .7361016     2.19   0.030      .154985    3.064905
       GPRA  |   .7070048   .9660833     0.73   0.465    -1.202531    2.616541
       INDS  |   .3487059   2.395833     0.15   0.884    -4.386837    5.084249
       JRPT  |    4.44845   1.494431     2.98   0.003     1.494595    7.402305
       JTPE  |    .834028   3.572804     0.23   0.816    -6.227887    7.895942
       KIJA  |  -2.493057   1.432208    -1.74   0.084    -5.323924    .3378107
       LINK  |   5.043667   4.371182     1.15   0.250    -3.596301    13.68364
       LPCK  |   6.240876   6.955493     0.90   0.371    -7.507178    19.98893
       LPGI  |   1.179102   .8410096     1.40   0.163    -.4832171     2.84142
       LPKR  |   .7737229   1.459914     0.53   0.597    -2.111906    3.659352
       MARI  |   4.511691     6.4431     0.70   0.485     -8.22358    17.24696
       MDIA  |   3.637022   4.998187     0.73   0.468    -6.242271    13.51631
       MDLN  |  -5.018098   2.952339    -1.70   0.091    -10.85362    .8174219
       MEGA  |   3.629563   3.339883     1.09   0.279    -2.971967    10.23109
       MKPI  |   5.926182   2.035153     2.91   0.004     1.903549    9.948814
       MMLP  |   .8126784    2.50436     0.32   0.746    -4.137377    5.762734
       MNCN  |     1.6835   2.823976     0.60   0.552    -3.898301    7.265301
       MREI  |   2.293249   1.157294     1.98   0.049     .0057712    4.580727
       MTLA  |   3.542054   1.936665     1.83   0.069    -.2859105    7.370019
       MYRX  |  -2.469469   .7999408    -3.09   0.002    -4.050612   -.8883258
       NISP  |   .0944043   .7654037     0.12   0.902    -1.418474    1.607282
       PLIN  |   1.818417   3.990349     0.46   0.649    -6.068808    9.705643
       PNBN  |  -.5133411   .6766237    -0.76   0.449    -1.850739    .8240564
       PNIN  |   1.555931   .8908233     1.75   0.083    -.2048478     3.31671
       PPRO  |  -7.645823    1.93914    -3.94   0.000    -11.47868   -3.812969
       PWON  |    .827668   1.376719     0.60   0.549     -1.89352    3.548856
       RDTX  |   1.647971   1.343093     1.23   0.222    -1.006753    4.302695
       RODA  |   .2733828   1.023854     0.27   0.790    -1.750341    2.297106
       SCBD  |   2.449009   .9853489     2.49   0.014     .5013928    4.396625
       SCMA  |   11.37837   6.599241     1.72   0.087     -1.66552    24.42227
       SDRA  |  -.2775776   .5947717    -0.47   0.641    -1.453188    .8980333
       SMDM  |  -.2651635   .9403621    -0.28   0.778     -2.12386    1.593533
       SMRA  |  -.8117748   .9704148    -0.84   0.404    -2.729872    1.106323
       SMSM  |   7.956638    7.70801     1.03   0.304    -7.278821     23.1921
       TARA  |  -1.243613   1.169836    -1.06   0.290    -3.555881    1.068655
       TLKM  |   4.399757   4.520706     0.97   0.332    -4.535757    13.33527
       VINS  |   2.005052   1.621869     1.24   0.218    -1.200693    5.210797
       VIVA  |  -4.834313    4.09723    -1.18   0.240     -12.9328    3.264169
             |
       year |
       2017  |  -.5542752   .4074146    -1.36   0.176    -1.359561    .2510102
       2018  |  -2.224763   .5223219    -4.26   0.000    -3.257171   -1.192354
             |
       _cons |  -1.037165   .6538399    -1.59   0.115    -2.329528    .2551992
------------------------------------------------------------------------------

. testparm i.id

 ( 1)  2.id = 0
 ( 2)  3.id = 0
 ( 3)  4.id= 0
.
. (to save the space)
.
 (71)  72.id = 0
 (72)  73.id = 0
 (73)  74.id = 0

       F( 73,   144) =   10.22
            Prob > F =    0.0000

. testparm i.year

 ( 1)  2017.year = 0
 ( 2)  2018.year = 0

       F(  2,   144) =    9.39
            Prob > F =    0.0001
Thank you.