I'm working with COVID-19 data in order to study the effect of inequality on coronavirus spread. The data looks like:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str52 Country int date str28 Code double var float gini double(pob dead recovered) float(rate n) "Iceland" 48 "ISL" 34 26.8 352721 0 161 .09639347 1 "Seychelles" 63 "SYC" 7 46.8 96762 0 0 .07234245 2 "Montenegro" 66 "MNE" 27 39 622227 2 91 .04339252 3 "Mauritius" 67 "MUS" 42 36.8 1265303 1 44 .03319363 4 "Slovenia" 54 "SVN" 57 24.2 2073894 12 22 .02748453 5 "Uruguay" 63 "URY" 94 39.7 3449299 5 63 .027251914 6 "Malta" 56 "MLT" 12 29.2 484630 1 147 .024761157 7 "Cyprus" 58 "CYP" 26 31.4 1189265 2 198 .02186224 8 "Maldives" 57 "MDV" 10 31.3 515696 1 1 .01939127 9 "Sao Tome and Principe" 86 "STP" 4 56.3 211028 0 4 .01895483 10 "Albania" 58 "ALB" 42 33.2 2866376 4 85 .01465265 11 "Panama" 59 "PAN" 55 49.2 4176873 42 305 .013167745 12 "St. Lucia" 63 "LCA" 2 51.2 181889 0 0 .010995717 13 "Cabo Verde" 69 "CPV" 4 42.4 543767 0 3 .007356092 14 "Kyrgyz Republic" 67 "KGZ" 42 27.7 6322800 0 160 .006642627 15 "West Bank and Gaza" 54 "PSE" 30 33.7 4569087 -2 -16 .006565863 16 "Norway" 46 "NOR" 32 27 5311916 16 0 .006024192 17 "Bulgaria" 57 "BGR" 41 40.4 7025037 14 76 .005836268 18 "Fiji" 68 "FJI" 5 36.7 883483 0 4 .005659419 19 "Switzerland" 45 "CHE" 42 32.7 8513227 188 2800 .004933499 20 "Moldova" 57 "MDA" 12 25.7 2706049 36 521 .0044345097 21 "Costa Rica" 55 "CRI" 22 48 4999441 0 142 .004400492 22 "Guinea-Bissau" 74 "GNB" 8 50.7 1874309 1 16 .0042682397 23 "China" 11 "CHN" 5494 38.5 1392730000 1 385 .0039447704 24 "Ireland" 49 "IRL" 18 32.8 4867309 438 4153 .003698142 25 "Luxembourg" 49 "LUX" 2 34.9 607950 7 2485 .003289744 26 "Djibouti" 67 "DJI" 3 41.6 958920 0 390 .0031285195 27 "Slovak Republic" 55 "SVK" 16 25.2 5446771 8 236 .00293752 28 "Portugal" 51 "PRT" 30 33.8 10283822 169 318 .0029172034 29 "Serbia" 55 "SRB" 19 36.2 6982604 40 276 .002721048 30 "Botswana" 79 "BWA" 6 53.3 2254126 0 5 .0026617856 31 "Kazakhstan" 62 "KAZ" 44 27.5 18272430 5 306 .0024079995 32 "Netherlands" 47 "NLD" 38 28.5 17231624 618 0 .0022052478 33 "Bosnia and Herzegovina" 54 "BIH" 7 33 3323929 15 242 .0021059415 34 "Austria" 45 "AUT" 18 29.7 8840521 62 1213 .002036079 35 "Czech Republic" 50 "CZE" 19 24.9 10629928 26 1162 .0017874063 36 "Denmark" 47 "DNK" 10 28.7 5793636 58 1162 .0017260318 37 "Croatia" 45 "HRV" 7 30.4 4087843 19 465 .0017123945 38 "Estonia" 47 "EST" 2 30.4 1321977 7 57 .0015128857 39 "Gabon" 63 "GAB" 3 38 2119275 1 43 .0014155784 40 "El Salvador" 68 "SLV" 9 38.6 6420744 2 52 .0014017067 41 "Rwanda" 63 "RWA" 17 43.7 12301939 0 17 .001381896 42 "Bhutan" 55 "BTN" 1 37.4 754394 0 2 .0013255673 43 "Namibia" 63 "NAM" 3 59.1 2448255 0 1 .0012253625 44 "Iran, Islamic Rep." 39 "IRN" 95 40.8 81800269 547 10260 .0011613654 45 "Lao PDR" 73 "LAO" 8 36.4 7061507 0 4 .0011329027 46 "Latvia" 51 "LVA" 2 35.6 1927174 4 215 .001037789 47 "Bolivia" 60 "BOL" 11 42.2 11353142 16 73 .0009688948 48 "Hungary" 53 "HUN" 9 30.6 9775564 73 191 .000920663 49 "Eswatini" 63 "SWZ" 1 54.6 1136191 0 4 .0008801337 50 "Gambia, The" 66 "GMB" 2 35.9 2280102 0 6 .0008771538 51 "Madagascar" 69 "MDG" 23 42.6 26262368 0 34 .0008757779 52 "Paraguay" 57 "PRY" 6 46.2 6956071 1 46 .0008625559 53 "Honduras" 60 "HND" 8 52.1 9587522 24 48 .0008344179 54 "Georgia" 46 "GEO" 3 36.4 3726549 1 73 .0008050344 55 "Timor-Leste" 71 "TLS" 1 28.7 1267972 0 15 .000788661 56 "Sierra Leone" 80 "SLE" 6 35.7 7650154 6 11 .000784298 57 "Ecuador" 50 "ECU" 13 45.4 17084357 340 230 .00076093 58 "Burkina Faso" 59 "BFA" 15 35.3 19751535 2 96 .0007594347 59 "Haiti" 69 "HTI" 8 41.1 11123176 3 6 .000719219 60 "Guatemala" 63 "GTM" 12 48.3 17247807 5 36 .0006957406 61 "Greece" 46 "GRC" 7 34.4 10731726 15 797 .0006522716 62 "Belarus" 48 "BLR" 6 25.2 9483499 29 1448 .0006326779 63 "Liberia" 65 "LBR" 3 35.3 4818977 8 25 .0006225388 64 "Poland" 53 "POL" 22 29.7 37974750 190 1496 .0005793323 65 "Congo, Rep." 64 "COG" 3 48.9 5244363 3 3 .0005720428 66 "Turkey" 60 "TUR" 47 41.9 82319724 683 30395 .00057094457 67 "Uganda" 70 "UGA" 23 42.8 42723139 0 6 .00053834997 68 "Ghana" 63 "GHA" 16 43.5 29767108 8 113 .000537506 69 "United Arab Emirates" 18 "ARE" 5 32.5 9630959 49 792 .0005191591 70 "Iraq" 44 "IRQ" 19 29.5 38433600 10 204 .0004943591 71 "Australia" 15 "AUS" 12 34.4 24982688 18 695 .0004803326 72 "North Macedonia" 46 "MKD" 1 34.2 2082958 21 437 .0004800865 73 "Peru" 55 "PER" 15 42.8 31989256 479 2983 .0004689074 74 "Mauritania" 63 "MRT" 2 32.6 4403319 0 0 .00045420285 75 "Niger" 69 "NER" 10 34.3 22442948 8 196 .0004455743 76 "Malawi" 82 "MWI" 8 44.7 18143315 0 4 .0004409337 77 "Tunisia" 53 "TUN" 5 32.8 11565204 3 115 .0004323313 78 "Chile" 52 "CHL" 8 44.4 18729160 59 2776 .0004271414 79 "Myanmar" 76 "MMR" 20 30.7 53708395 1 18 .0003723813 80 "Lithuania" 48 "LTU" 1 37.3 2801543 5 190 .0003569461 81 "Armenia" 50 "ARM" 1 34.4 2951776 8 270 .0003387791 82 "Israel" 41 "ISR" 3 39 8882800 30 2950 .00033773136 83 "Mongolia" 59 "MNG" 1 32.7 3170208 0 1 .0003154367 84 "Nicaragua" 68 "NIC" 2 46.2 6465513 0 0 .0003093335 85 "Lebanon" 41 "LBN" 2 31.8 6848925 2 10 .0002920166 86 "Mozambique" 71 "MOZ" 8 54 29495962 0 3 .00027122357 87 "Argentina" 52 "ARG" 12 41.4 44494502 53 337 .00026969623 88 "Burundi" 80 "BDI" 3 38.6 11175378 0 0 .0002684473 89 "Malaysia" 14 "MYS" 8 41 31528585 7 629 .000253738 90 "Senegal" 51 "SEN" 4 40.3 15854360 3 77 .00025229654 91 "South Africa" 54 "ZAF" 13 63 57779622 28 600 .00022499282 92 "Tanzania" 65 "TZA" 12 40.5 56318348 6 156 .00021307443 93 "Zimbabwe" 69 "ZWE" 3 44.3 14439018 0 3 .00020777037 94 "Thailand" 11 "THA" 14 36.4 69428524 4 254 .00020164622 95 "Cote d'Ivoire" 60 "CIV" 5 41.5 25069229 0 215 .0001994477 96 "Chad" 68 "TCD" 3 43.3 15477751 5 25 .0001938266 97 "Dominican Republic" 50 "DOM" 2 43.7 10627165 36 720 .00018819695 98 "Finland" 18 "FIN" 1 27.4 5515525 39 1000 .0001813064 99 "Colombia" 55 "COL" 9 50.4 49648685 78 512 .0001812737 100 end label values n pais label def pais 1 "Iceland", modify label def pais 2 "Seychelles", modify label def pais 3 "Montenegro", modify label def pais 4 "Mauritius", modify label def pais 5 "Slovenia", modify
tabstat rate gini dead recovered if inrange(n,1,5) | inrange(n,135,139), by(n)
and I got this table:
Code:
n | rate gini dead recove~d -----------------+---------------------------------------- Iceland | .0963935 26.8 0 161 Seychelles | .0723424 46.8 0 0 Montenegro | .0433925 39 2 91 Mauritius | .0331936 36.8 1 44 Slovenia | .0274845 24.2 12 22 United States | .0000153 41.4 13272 73744 Russian Federati | .0000138 37.5 518 6728 Egypt | .0000102 31.5 105 377 Brazil | 9.55e-06 53.9 2675 9362 India | 2.22e-06 37.8 433 4056 -----------------+---------------------------------------- Total | .0272858 37.57 1701.8 9458.5 ----------------------------------------------------------
I hope you understand my question. Thanks
0 Response to Exporting tabstat output to latex
Post a Comment