Hi all
I'm running a pool OLS regression with the command as follows.
xi: reg lnnumber_d_w post soe postsoe ownership asset_w leverage_w cashhold_w i.indu1 i.year1,cluster(stkcd)
When I run the same do-file with same data in STATA14 and STATA15, the result for variable “post"(a dummy variable coding 1 after year 2013) is different while other variables are same.
Morever, _Iyear1_2014 is omitted because of collinearity in STATA 14 while _Iyear1_2015 is omitted because of collinearity in STATA 15.
I just wonder why the results are different in STATA14 and 15. Which result is correct?
Below is the result using STATA14.
i.indu1 _Iindu1_1-17 (_Iindu1_1 for indu1==A omitted)
i.year1 _Iyear1_2009-2015 (naturally coded; _Iyear1_2009 omitted)
note: _Iyear1_2014 omitted because of collinearity
Linear regression Number of obs = 9,217
F(37, 2110) = 9.43
Prob > F = 0.0000
R-squared = 0.0531
Root MSE = .29529
(Std. Err. adjusted for 2,111 clusters in stkcd)
-------------------------------------------------------------------------------
| Robust
lnnumber_d_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
post | .0668674 .013085 5.11 0.000 .0412067 .0925282
soe | -.0110271 .0093917 -1.17 0.240 -.0294451 .0073909
postsoe | -.0894927 .0123459 -7.25 0.000 -.1137042 -.0652813
ownership | -.0013779 .0211927 -0.07 0.948 -.0429386 .0401829
asset_w | .006405 .0035147 1.82 0.069 -.0004877 .0132978
leverage_w | .0308835 .0220983 1.40 0.162 -.0124533 .0742203
cashhold_w | .0648878 .0279293 2.32 0.020 .0101159 .1196596
_Iindu1_2 | .0836318 .0283376 2.95 0.003 .0280593 .1392043
_Iindu1_3 | .0384154 .0183909 2.09 0.037 .0023491 .0744817
_Iindu1_4 | .1246017 .0270419 4.61 0.000 .07157 .1776333
_Iindu1_5 | .0585011 .0269362 2.17 0.030 .0056767 .1113255
_Iindu1_6 | .041658 .0221213 1.88 0.060 -.0017239 .0850399
_Iindu1_7 | .0586802 .0252648 2.32 0.020 .0091338 .1082267
_Iindu1_8 | .0196253 .0339283 0.58 0.563 -.0469111 .0861616
_Iindu1_9 | .0792681 .0267385 2.96 0.003 .0268317 .1317046
_Iindu1_10 | .0433499 .0244094 1.78 0.076 -.0045192 .091219
_Iindu1_11 | .0640976 .0376795 1.70 0.089 -.0097953 .1379904
_Iindu1_12 | .0694245 .0631215 1.10 0.272 -.0543623 .1932113
_Iindu1_13 | .064119 .0429139 1.49 0.135 -.020039 .148277
_Iindu1_14 | .0542156 .1049017 0.52 0.605 -.151506 .2599372
_Iindu1_15 | .0503639 .0456947 1.10 0.271 -.0392474 .1399752
_Iindu1_16 | -.0219435 .0351372 -0.62 0.532 -.0908506 .0469636
_Iindu1_17 | .087508 .0390906 2.24 0.025 .0108478 .1641682
_Iyear1_2010 | .0163025 .0112808 1.45 0.149 -.0058202 .0384251
_Iyear1_2011 | .0006867 .0113649 0.06 0.952 -.0216008 .0229743
_Iyear1_2012 | .0056306 .0108877 0.52 0.605 -.0157211 .0269823
_Iyear1_2014 | 0 (omitted)
_Iyear1_2015 | .0566508 .0103356 5.48 0.000 .0363817 .0769199
_cons | .0145059 .0758323 0.19 0.848 -.1342079 .1632198
-------------------------------------------------------------------------------
Here is the result using STATA15.
i.indu1 _Iindu1_1-17 (_Iindu1_1 for indu1==A omitted)
i.year1 _Iyear1_2009-2015 (naturally coded; _Iyear1_2009 omitted)
note: _Iyear1_2015 omitted because of collinearity
Linear regression Number of obs = 9,217
F(37, 2110) = 9.78
Prob > F = 0.0000
R-squared = 0.0547
Root MSE = .29822
(Std. Err. adjusted for 2,111 clusters in stkcd)
------------------------------------------------------------------------------
| Robust
lnnumber_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
post | .1268291 .0145373 8.72 0.000 .0983201 .1553382
soe | -.0130607 .009503 -1.37 0.169 -.0316969 .0055755
postsoe | -.092008 .0125001 -7.36 0.000 -.1165218 -.0674942
ownership | .0006562 .0214245 0.03 0.976 -.0413591 .0426715
asset_w | .0072593 .0035555 2.04 0.041 .0002866 .0142319
leverage_w | .0291227 .0222048 1.31 0.190 -.0144228 .0726682
cashhold_w | .0629849 .028271 2.23 0.026 .0075428 .1184269
_Iindu1_2 | .0877501 .029679 2.96 0.003 .029547 .1459532
_Iindu1_3 | .0369433 .0198711 1.86 0.063 -.0020256 .0759122
_Iindu1_4 | .121166 .0280556 4.32 0.000 .0661465 .1761856
_Iindu1_5 | .0596673 .0284525 2.10 0.036 .0038694 .1154652
_Iindu1_6 | .0381356 .0234042 1.63 0.103 -.0077621 .0840333
_Iindu1_7 | .0564075 .0265541 2.12 0.034 .0043325 .1084824
_Iindu1_8 | .0167578 .0344558 0.49 0.627 -.0508132 .0843287
_Iindu1_9 | .075899 .028062 2.70 0.007 .020867 .1309311
_Iindu1_10 | .0395524 .0254455 1.55 0.120 -.0103484 .0894532
_Iindu1_11 | .0604579 .0384397 1.57 0.116 -.0149258 .1358415
_Iindu1_12 | .0650782 .0635301 1.02 0.306 -.05951 .1896665
_Iindu1_13 | .0599678 .0435654 1.38 0.169 -.0254679 .1454035
_Iindu1_14 | .0511799 .1055605 0.48 0.628 -.1558336 .2581934
_Iindu1_15 | .0446924 .0459836 0.97 0.331 -.0454855 .1348703
_Iindu1_16 | -.0268586 .0359398 -0.75 0.455 -.0973397 .0436225
_Iindu1_17 | .083435 .0398149 2.10 0.036 .0053545 .1615155
_Iyear1_2010 | .0162149 .0112807 1.44 0.151 -.0059076 .0383374
_Iyear1_2011 | .0019031 .0114849 0.17 0.868 -.0206197 .024426
_Iyear1_2012 | .0066134 .0109773 0.60 0.547 -.014914 .0281409
_Iyear1_2014 | -.0564731 .010469 -5.39 0.000 -.0770038 -.0359424
_Iyear1_2015 | 0 (omitted)
_cons | .0123937 .0771134 0.16 0.872 -.1388326 .1636199
------------------------------------------------------------------------------
Related Posts with different results using stata14 and stata15
Selecting a subset from a balanced panel data under certain conditionsDear all, I need some help. Well, I have a database in the structure of a balanced panel. I have to…
gsem for latent class analysis_not concave issueHello dear Stata users, I want to run a latent class analysis with 37 variables and approximately 7…
Question about spregdpdDear all, After we use xtabond or xtabond2, we can use "estat serial" to get AR(1) and AR(2) .But if…
Loop command to generate 100 variables with mean 0 and standard deviations which increase from 1 to 100 How i can use the loop command to generate 100 variables var_1 to var_100, which are normally dist…
Transforming Quarterly Variables into Annual Variables - British Labour Force SurveyHi everyone, I am working on the British Labour Force Survey (LFS) data to explore the effects of m…
Subscribe to:
Post Comments (Atom)
0 Response to different results using stata14 and stata15
Post a Comment