I'm confused by xttest0 result and wondering about this result inference. My data consist of 74 observation for 3 years (2016-2018).
Before i explain my confusion let me show my result of F test (chow) over my time dummies (time effect) in my FE model.
Code:
. xtreg Y X1 X2 i.year, vce(robust) Random-effects GLS regression Number of obs = 222 Group variable: id Number of groups = 74 R-sq: Obs per group: within = 0.5808 min = 3 between = 0.7509 avg = 3.0 overall = 0.6921 max = 3 Wald chi2(4) = 224.45 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 74 clusters in id) ------------------------------------------------------------------------------ | Robust Y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- X1 | .7108377 .1066756 6.66 0.000 .5017573 .9199181 X2 | 28.54182 3.993661 7.15 0.000 20.71438 36.36925 | id | 2017 | -.6259327 .3506201 -1.79 0.074 -1.313136 .0612702 2018 | -2.147511 .5524324 -3.89 0.000 -3.230259 -1.064763 | _cons | -.8966768 .5696678 -1.57 0.115 -2.013205 .2198515 -------------+---------------------------------------------------------------- sigma_u | 1.8382725 sigma_e | 2.7763652 rho | .30478115 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . testparm i.year ( 1) 2017.year = 0 ( 2) 2018.year = 0 chi2( 2) = 15.13 Prob > chi2 = 0.0005
But the question came when i'm trying to test Breusch-Pagan LM for my re model.
Because i include time dummies in my model,
1. how to test variance for my dummies using xttest0?
2. because i assumed that breusch pagan only test H0; σ2μi = 0 (individual effect variance), how about time dummies that i include in model? does it mean that i also test H0; σ2δt = 0 (time effect variance)?
and this is how i do xttest0, feel free to correct:
Code:
. xtreg Y X1 X2 i.year, re vce (robust) Random-effects GLS regression Number of obs = 222 Group variable: id Number of groups = 74 R-sq: Obs per group: within = 0.5808 min = 3 between = 0.7509 avg = 3.0 overall = 0.6921 max = 3 Wald chi2(4) = 224.45 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 (Std. Err. adjusted for 74 clusters in Kode) ------------------------------------------------------------------------------ | Robust Y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- X1 | .7108377 .1066756 6.66 0.000 .5017573 .9199181 X2 | 28.54182 3.993661 7.15 0.000 20.71438 36.36925 | year | 2017 | -.6259327 .3506201 -1.79 0.074 -1.313136 .0612702 2018 | -2.147511 .5524324 -3.89 0.000 -3.230259 -1.064763 | _cons | -.8966768 .5696678 -1.57 0.115 -2.013205 .2198515 -------------+---------------------------------------------------------------- sigma_u | 1.8382725 sigma_e | 2.7763652 rho | .30478115 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . xttest0 Breusch and Pagan Lagrangian multiplier test for random effects Y[Kode,t] = Xb + u[Kode] + e[Kode,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- Y | 35.59679 5.966304 e | 7.708204 2.776365 u | 3.379246 1.838272 Test: Var(u) = 0 chibar2(01) = 18.54 Prob > chibar2 = 0.0000
0 Response to Breusch-Pagan LM Test for Random Effect Model
Post a Comment