Hello,
I am trying to calculate the arc elasticities for a low income group and a high income group. I am using bootstrap replication but I am getting crazy high SE.
Am I doing it wrong? I think it is also possible to get the elasticities using nlcom, but I have no idea how to? I have read the manual on nlcom.
I am trying to get the arc price elasticities for the effect of cost sharing in different insurance plans from the RAND experiment. The rand_plan_groupX are all dummies.
I am focusing on the results for the total annual medical spending: spending_infl.
here is the current code I am using for the elasticities:
Code:
program ArcElasticityHigh version 10.1 syntax [varlist] [if] [in] [,*] tokenize `varlist' local lhsvar `1' macro shift 1 local rhsvars "`*'" if replay() { _coef_table, `options' exit } _rmcollright `rhsvars', noconstant local rhs `r(varlist)' regress `lhsvar' `rhs' `if' `in', `options' tempname bb_regress matrix `bb_regress' = e(b) tempname bb matrix `bb' = J(1,18,0) matrix `bb'[1,1] = (`bb_regress'[1,2] - `bb_regress'[1,1])/(`bb_regress'[1,2] + `bb_regress'[1,1]) matrix `bb'[1,2] = (`bb_regress'[1,3] - `bb_regress'[1,1])/(`bb_regress'[1,3] + `bb_regress'[1,1]) matrix `bb'[1,3] = (`bb_regress'[1,4] - `bb_regress'[1,1])/(`bb_regress'[1,4] + `bb_regress'[1,1]) matrix `bb'[1,4] = (`bb_regress'[1,5] - `bb_regress'[1,1])/(`bb_regress'[1,5] + `bb_regress'[1,1]) matrix `bb'[1,5] = (`bb_regress'[1,6] - `bb_regress'[1,1])/(`bb_regress'[1,6] + `bb_regress'[1,1]) matrix `bb'[1,6] = ((`bb_regress'[1,3] - `bb_regress'[1,2])/(`bb_regress'[1,3] + `bb_regress'[1,2]))/((31.897 - 25)/(31.897 + 25)) matrix `bb'[1,7] = ((`bb_regress'[1,4] - `bb_regress'[1,2])/(`bb_regress'[1,4] + `bb_regress'[1,2]))/((50-25)/(50 + 25)) matrix `bb'[1,8] = ((`bb_regress'[1,5] - `bb_regress'[1,2])/(`bb_regress'[1,5] + `bb_regress'[1,2]))/((95-25)/(95 + 25)) matrix `bb'[1,9] = ((`bb_regress'[1,6] - `bb_regress'[1,2])/(`bb_regress'[1,6] + `bb_regress'[1,2]))/((57.67825-25)/(57.67825 + 25)) matrix `bb'[1,10] = ((`bb_regress'[1,4] - `bb_regress'[1,3])/(`bb_regress'[1,4] + `bb_regress'[1,3]))/((50-31.897)/(50 + 31.897)) matrix `bb'[1,11] = ((`bb_regress'[1,5] - `bb_regress'[1,3])/(`bb_regress'[1,5] + `bb_regress'[1,3]))/((95-31.897)/(95 + 31.897)) matrix `bb'[1,12] = ((`bb_regress'[1,6] - `bb_regress'[1,3])/(`bb_regress'[1,4] + `bb_regress'[1,3]))/((57.67825-31.897)/(57.67825 + 31.897)) matrix `bb'[1,13] = ((`bb_regress'[1,5] - `bb_regress'[1,4])/(`bb_regress'[1,5] + `bb_regress'[1,4]))/((95-50)/(95 + 50)) matrix `bb'[1,14] = ((`bb_regress'[1,6] - `bb_regress'[1,4])/(`bb_regress'[1,6] + `bb_regress'[1,4]))/((57.67825-50)/(57.6825 + 50)) matrix `bb'[1,15] = ((`bb_regress'[1,6] - `bb_regress'[1,5])/(`bb_regress'[1,6] + `bb_regress'[1,5]))/((57.67825-95)/(57.6825 + 95)) matrix `bb'[1,16] = (3529*`bb'[1,1] + 2993*`bb'[1,2] + 3143*`bb'[1,3] + 4020*`bb'[1,4] + 3932*`bb'[1,5] + 1568*`bb'[1,6] + 1718*`bb'[1,7] + 2595*`bb'[1,8] + 2507*`bb'[1,9] + 1181*`bb'[1,10] + 2058*`bb'[1,11] + 1970*`bb'[1,12] + 2209*`bb'[1,13] + 2121*`bb'[1,14] + 2998*`bb'[1,15])/38542 matrix `bb'[1,17] = (1568*`bb'[1,6] + 1718*`bb'[1,7] + 2595*`bb'[1,8] + 2507*`bb'[1,9] + 1181*`bb'[1,10] + 2058*`bb'[1,11] + 1970*`bb'[1,12] + 2209*`bb'[1,13] + 2121*`bb'[1,14] + 2998*`bb'[1,15])/20925 matrix `bb'[1,18] = (1568*`bb'[1,6] + 1718*`bb'[1,7] + 2595*`bb'[1,8] + 1181*`bb'[1,10] + 2058*`bb'[1,11] + 2209*`bb'[1,13])/11329 matrix colnames `bb' = 25vFC MixedvFC 50vFC 95vFC IDvFC 25vMixed 25v50 25v95 25vID Mixedv50 Mixedv95 MixedvID 50v95 50vID 95vID AllPlansAvr NotFC NotFCID tempvar mySamp gen `mySamp' = e(sample) ereturn post `bb', esample(`mySamp') end cd "/Users/lisabrenz/Desktop/RAND_HIE_TDL_data/AnalysisData" use"high_incomegroup_2.dta" seet seed 620549 log using /Users/lisabrenz/Desktop/RAND_HIE_TDL_data/TableArcElast_Highincome1.log, replace local vars "spending inp out" foreach var of local vars { local controls age baseline_fam_size quietly ArcElasticityHigh `var'_infl rand_plan_group1 rand_plan_group2 rand_plan_group3 rand_plan_group4 rand_plan_group5 rand_plan_group6 `controls' demeaned_fam_start_month_site* demeaned_cal_year*, nocons bs, cluster(ifamily) reps(500): ArcElasticityHigh `var'_infl rand_plan_group1 rand_plan_group2 rand_plan_group3 rand_plan_group4 rand_plan_group5 rand_plan_group6 `controls' demeaned_fam_start_month_site* demeaned_cal_year*, nocons } capture log close clear
And I get the following results for the elasticities of spending_infl:
Code:
Bootstrap results Number of obs = 7,542 Replications = 500 (Replications based on 1,061 clusters in ifamily) ------------------------------------------------------------------------------ | Observed Bootstrap Normal-based | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 25vFC | -.396818 .3512734 -1.13 0.259 -1.085301 .2916653 MixedvFC | -.2921649 .3247836 -0.90 0.368 -.928729 .3443992 50vFC | -.7415102 2.305057 -0.32 0.748 -5.25934 3.776319 95vFC | -.8324506 1.524617 -0.55 0.585 -3.820644 2.155743 IDvFC | -.1460065 .164682 -0.89 0.375 -.4687772 .1767642 25vMixed | .9765572 24.74259 0.04 0.969 -47.51803 49.47115 25v50 | -1.465206 11.851 -0.12 0.902 -24.69274 21.76233 25v95 | -1.115177 13.42692 -0.08 0.934 -27.43146 25.20111 25vID | .6735974 215.0348 0.00 0.998 -420.7868 422.134 Mixedv50 | -2.595004 125.3938 -0.02 0.983 -248.3624 243.1724 Mixedv95 | -1.435658 36.67244 -0.04 0.969 -73.31233 70.44101 MixedvID | .9851153 25.85431 0.04 0.970 -49.6884 51.65863 50v95 | -.7656327 10.26238 -0.07 0.941 -20.87953 19.34826 50vID | 9.365516 202.6918 0.05 0.963 -387.9031 406.6341 95vID | -3.196775 25.04948 -0.13 0.898 -52.29285 45.89931 AllPlansAvr | -.1610361 19.12084 -0.01 0.993 -37.6372 37.31513 NotFC | .1108378 35.19378 0.00 0.997 -68.8677 69.08937 NotFCID | -1.023076 16.66974 -0.06 0.951 -33.69516 31.64901 ------------------------------------------------------------------------------
0 Response to Arc Elasticities
Post a Comment