I am working (still in process on the matching model) on a project using teffects psmatch with a number of outcome and treatment variables. The number variables has prompted me to get creative with how I display my diagnostics. Following a teffects psmatch estimation and in checking for the balance of the match, I use the
Code:
tebalance summarize
PHP Code:
.
Treatment-effects estimation Number of obs = 5,357
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 2
---------------------------------------------------------------------------------------
| AI Robust
Yvar | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------------+----------------------------------------------------------------
ATE |
Treatment |
(yes vs No) | .1712712 .0297238 5.76 0.000 .1130136 .2295289
---------------------------------------------------------------------------------------
. tebalance summarize
note: refitting the model using the generate() option
Covariate balance summary
Raw Matched
-----------------------------------------
Number of obs = 5,357 10,714
Treated obs = 3,915 5,357
Control obs = 1,442 5,357
-----------------------------------------
-----------------------------------------------------------------
|Standardized differences Variance ratio
| Raw Matched Raw Matched
----------------+------------------------------------------------
|
X1 | .0239846 -.0216856 1.003129 .9976267
|
x2| -.0883955 -.0084951 1.072024 1.040323
x3| .03316 .0037765 .9799571 .9515908
x4 | .0745632 -.0019823 1.018004 1.045509
|
X5 | .2021603 .0005313 .6816709 .9989242
|
x6 | -.1715681 -.0101372 1.098919 .9468103
x7 | .0766124 .0212042 .9688859 .9993285
x8 | .0059114 .0452078 1.0091 .9892231
x9 | .0704363 .0558643 1.03551 .9940278
x10 | .1198441 .0224827 .9024419 .8567823
|
|
x11 | -.1158196 .0448593 .7736173 1.11359
x12 | .1435748 .0308307 1.398567 1.069149
x13 | .0225676 -.0165485 1.057586 .9601829
x14 | -.1680311 .0230644 .6564869 1.063654
x15 | -.1101453 -.0098 .7807659 .9771978
x16 | .0683352 -.0480281 1.1599 .9064829
x17 | .1115147 -.0112496 1.277536 .9771073
-----------------------------------------------------------------
Sincerely,
Eric
0 Response to tebalance summarize coefplot
Post a Comment