I have done multiple tests where I have found out that i should include year dummies, trends and clustered SE (due to heteroscedasticity and autocorrelation) and that I should rely on a FE, rather than a RE model.
When doing:
xtset cou_1 year
xtreg flfpr2554 moth_leave moth_leave_2 i.year i.cou_1#c.t, fe i(cou_1) vce(cluster cou_1)
nlcom _b[moth_leave]/(2*-_b[moth_leave_2])
adopath ++ "m:\p_arbeid\p_betaald_verlof\SSC install"
utest moth_leave moth_leave_2
(129 missing values generated)
Specification: f(x)=x^2
Extreme point: 538.5394
Test:
H1: Inverse U shape
vs. H0: Monotone or U shape
-------------------------------------------------
| Lower bound Upper bound
-----------------+-------------------------------
Interval | 0 198
Slope | .0351557 .0222303
-------------------------------------------------
Extremum outside interval - trivial failure to reject H0
xtreg flfpr2554 moth_leave moth_leave_2 i.year i.cou_1#c.t, fe i(cou_1) vce(cluster cou_1)
nlcom _b[moth_leave]/(2*-_b[moth_leave_2])
adopath ++ "m:\p_arbeid\p_betaald_verlof\SSC install"
utest moth_leave moth_leave_2
(129 missing values generated)
Specification: f(x)=x^2
Extreme point: 538.5394
Test:
H1: Inverse U shape
vs. H0: Monotone or U shape
-------------------------------------------------
| Lower bound Upper bound
-----------------+-------------------------------
Interval | 0 198
Slope | .0351557 .0222303
-------------------------------------------------
Extremum outside interval - trivial failure to reject H0
Code:
graph twoway (scatter flfpr2554 moth_leave) (function y=[44.7195]+x*[.0351557]+x^2*[-.0000326], range(0 800))
When not including year dummies and trends, my fit seems better.
Code:
use "m:\p_arbeid\p_betaald_verlof\Data\Stata files\7-1-regressions-2018", clear xtset cou_1 year gen moth_leave_2 = moth_leave*moth_leave xtreg flfpr2554 moth_leave moth_leave_2, fe i(cou_1) nlcom _b[moth_leave]/(2*-_b[moth_leave_2]) adopath ++ "m:\p_arbeid\p_betaald_verlof\SSC install\" utest moth_leave moth_leave_2 Specification: f(x)=x^2 Extreme point: 138.853 Test: H1: Inverse U shape vs. H0: Monotone or U shape ------------------------------------------------- | Lower bound Upper bound -----------------+------------------------------- Interval | 0 198 Slope | .4256187 -.1813002 t-value | 12.05258 -2.726574 P>|t| | 3.16e-31 .0032678 ------------------------------------------------- Overall test of presence of a Inverse U shape: t-value = 2.73 P>|t| = .00327
the u-test (presence of u-shape) becomes insignificant when clustering at country-level.
Code:
use "m:\p_arbeid\p_betaald_verlof\Data\Stata files\7-1-regressions-2018", clear xtset cou_1 year gen moth_leave_2 = moth_leave*moth_leave xtreg flfpr2554 moth_leave moth_leave_2, fe i(cou_1) vce(cluster cou_1) nlcom _b[moth_leave]/(2*-_b[moth_leave_2]) adopath ++ "m:\p_arbeid\p_betaald_verlof\SSC install\" utest moth_leave moth_leave_2 . utest moth_leave moth_leave_2 (129 missing values generated) Specification: f(x)=x^2 Extreme point: 138.853 Test: H1: Inverse U shape vs. H0: Monotone or U shape ------------------------------------------------- | Lower bound Upper bound -----------------+------------------------------- Interval | 0 198 Slope | .4256187 -.1813002 t-value | 3.384718 -.6482774 P>|t| | .0008667 .2604597 ------------------------------------------------- Overall test of presence of a Inverse U shape: t-value = 0.65 P>|t| = .26
However the tests did say I should include those and my r-squared goes down drastically when doing so.
Model 1 is a naive OLS model, 2 a fixed effectsmodel without trends and year dummies, 3 is a fixed effects model with year dummies, 4 a fixed effects model with year dummies and trends, 5 is the same as 4 but with SE clustered at the country-level.
Code:
(1) | (2) | (3) | (4) | (5) | |
VARIABLES | flfpr2554 | flfpr2554 | flfpr2554 | flfpr2554 | flfpr2554 |
moth_leave_div | 16.1989*** | 42.5619*** | -13.2572*** | 3.5156** | 3.5156 |
(3.0404) | (3.5313) | (2.7618) | (1.5361) | (3.0979) | |
moth_leave_div_2 | -7.3050*** | -15.3262*** | 7.1199*** | -0.3264 | -0.3264 |
(1.4861) | (2.3920) | (1.6326) | (0.9886) | (1.7249) | |
Constant | 46.6809*** | 52.0218*** | 47.3923*** | 44.7195*** | 44.7195*** |
(4.8106) | (1.1491) | (1.9779) | (0.9649) | (2.0572) | |
Observations | 863 | 863 | 863 | 863 | 863 |
R-squared | 0.3828 | 0.2037 | 0.7314 | 0.9618 | 0.9618 |
Specification | Quadratic | Quadratic | Quadratic | Quadratic | Quadratic |
Method | LPM | FE | FE and year dummies | FE and year dummies | FE and year dummies |
Controls | NO | NO | NO | NO | NO |
Clustering | NO | NO | NO | NO | YES |
Number of cou_1 | 37 | 37 | 37 | 37 | 37 |
Standard errors in parentheses | |||||
*** p<0.01, ** p<0.05, * p<0.1 |
What do you think when seeing this? I do not know which model to go for or how to explain these results.
Thank you in advance
0 Response to Determining best fe-model with paneldata (u-test)
Post a Comment