I have a question regarding stcox and stcrreg. i try to find how does the independent variable, bullying strategy (dummy), influence different kinds of ways border claims ended. Therefore, the competing risk model is an ideal choice. also, i am interesting in finding the probabilities of certain outcomes within some periods, which leads to the choice of stcrreg, as i want to generate cif for individual outcomes. I found, however, using stcox and stcrreg produces different results. Below is the example to illustrate this point.
there are in total of 9 kinds of outcomes:
Code:
resolved2 | Freq. Percent Cum.
------------+-----------------------------------
0 | 20,685 99.66 99.66
1 | 10 0.05 99.71
4 | 17 0.08 99.79
5 | 2 0.01 99.80
6 | 2 0.01 99.81
7 | 14 0.07 99.87
11 | 1 0.00 99.88
12 | 5 0.02 99.90
13 | 11 0.05 99.96
14 | 9 0.04 100.00
------------+-----------------------------------
Total | 20,756 100.00Code:
stset claimserialend, id(claimdy) fail(resolved2==7) origin(time claimserialstart) enter(enterdate)
scale(30)Code:
stcox i.bullying i.bdout_3 viol icowsal cumu10mid avgterg avgterv i.special, nohr nolog efron robust
Code:
failure _d: resolved2 == 7
analysis time _t: (claimserialend-origin)/30
origin: time claimserialstart
enter on or after: time enterdate
id: claimdy
Cox regression -- Efron method for ties
No. of subjects = 87 Number of obs = 20,756
No. of failures = 14
Time at risk = 20705.33333
Wald chi2(8) = 33.02
Log pseudolikelihood = -30.568174 Prob > chi2 = 0.0001
(Std. Err. adjusted for 87 clusters in claimdy)
------------------------------------------------------------------------------
| Robust
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.bullying | 1.554178 .6693342 2.32 0.020 .2423068 2.866049
1.bdout_3 | 1.212035 .7166583 1.69 0.091 -.1925897 2.616659
viol | .6764656 .3219261 2.10 0.036 .0455019 1.307429
icowsal | .2297885 .1818425 1.26 0.206 -.1266163 .5861933
cumu10mid | -.5565466 .1833163 -3.04 0.002 -.9158399 -.1972533
avgterg | -1.671215 .7281596 -2.30 0.022 -3.098381 -.2440479
avgterv | 2.208843 1.918719 1.15 0.250 -1.551777 5.969463
1.special | .2368191 .7650886 0.31 0.757 -1.262727 1.736365
------------------------------------------------------------------------------when i tried stcrreg, however, things are different:
Code:
stcrreg i.bullying i.bdout_2 i.bdout_3 viol icowsal cumu10mid avgterg avgterv i.special,
compete(resolved2 == 1 4 5 6 11 12 13 14) nohr nolog robust
failure _d: resolved2 == 7
analysis time _t: (claimserialend-origin)/30
origin: time claimserialstart
enter on or after: time enterdate
id: claimdy
Competing-risks regression No. of obs = 20,756
No. of subjects = 87
Failure event : resolved2 == 7 No. failed = 14
Competing events: (1) No. competing = 57
No. censored = 16
Wald chi2(9) = 1620.55
Log pseudolikelihood = -45.009945 Prob > chi2 = 0.0000
(Std. Err. adjusted for 87 clusters in claimdy)
------------------------------------------------------------------------------
| Robust
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.bullying | 1.167243 1.018178 1.15 0.252 -.8283493 3.162836
1.bdout_2 | -16.4309 1.002408 -16.39 0.000 -18.39559 -14.46622
1.bdout_3 | .3128215 .7729912 0.40 0.686 -1.202213 1.827856
viol | .5064316 .3091432 1.64 0.101 -.0994779 1.112341
icowsal | .1148364 .1666615 0.69 0.491 -.211814 .4414869
cumu10mid | -.4802709 .2456184 -1.96 0.051 -.9616742 .0011324
avgterg | -1.438623 .7947055 -1.81 0.070 -2.996217 .1189714
avgterv | 3.667996 1.440916 2.55 0.011 .8438523 6.492141
1.special | .6250076 .8436583 0.74 0.459 -1.028532 2.278548
------------------------------------------------------------------------------
(1) resolved2 == 1 4 5 6 11 12 13 14but based on the second model, i can still generate cif for bullying strategy dummy variable:
Array
Thanks in advance!
Best
Jiong
0 Response to stcox and stcrreg
Post a Comment