I have a question regarding stcox and stcrreg. i try to find how does the independent variable, bullying strategy (dummy), influence different kinds of ways border claims ended. Therefore, the competing risk model is an ideal choice. also, i am interesting in finding the probabilities of certain outcomes within some periods, which leads to the choice of stcrreg, as i want to generate cif for individual outcomes. I found, however, using stcox and stcrreg produces different results. Below is the example to illustrate this point.
there are in total of 9 kinds of outcomes:
Code:
resolved2 | Freq. Percent Cum. ------------+----------------------------------- 0 | 20,685 99.66 99.66 1 | 10 0.05 99.71 4 | 17 0.08 99.79 5 | 2 0.01 99.80 6 | 2 0.01 99.81 7 | 14 0.07 99.87 11 | 1 0.00 99.88 12 | 5 0.02 99.90 13 | 11 0.05 99.96 14 | 9 0.04 100.00 ------------+----------------------------------- Total | 20,756 100.00
Code:
stset claimserialend, id(claimdy) fail(resolved2==7) origin(time claimserialstart) enter(enterdate) scale(30)
Code:
stcox i.bullying i.bdout_3 viol icowsal cumu10mid avgterg avgterv i.special, nohr nolog efron robust
Code:
failure _d: resolved2 == 7 analysis time _t: (claimserialend-origin)/30 origin: time claimserialstart enter on or after: time enterdate id: claimdy Cox regression -- Efron method for ties No. of subjects = 87 Number of obs = 20,756 No. of failures = 14 Time at risk = 20705.33333 Wald chi2(8) = 33.02 Log pseudolikelihood = -30.568174 Prob > chi2 = 0.0001 (Std. Err. adjusted for 87 clusters in claimdy) ------------------------------------------------------------------------------ | Robust _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.bullying | 1.554178 .6693342 2.32 0.020 .2423068 2.866049 1.bdout_3 | 1.212035 .7166583 1.69 0.091 -.1925897 2.616659 viol | .6764656 .3219261 2.10 0.036 .0455019 1.307429 icowsal | .2297885 .1818425 1.26 0.206 -.1266163 .5861933 cumu10mid | -.5565466 .1833163 -3.04 0.002 -.9158399 -.1972533 avgterg | -1.671215 .7281596 -2.30 0.022 -3.098381 -.2440479 avgterv | 2.208843 1.918719 1.15 0.250 -1.551777 5.969463 1.special | .2368191 .7650886 0.31 0.757 -1.262727 1.736365 ------------------------------------------------------------------------------
when i tried stcrreg, however, things are different:
Code:
stcrreg i.bullying i.bdout_2 i.bdout_3 viol icowsal cumu10mid avgterg avgterv i.special, compete(resolved2 == 1 4 5 6 11 12 13 14) nohr nolog robust failure _d: resolved2 == 7 analysis time _t: (claimserialend-origin)/30 origin: time claimserialstart enter on or after: time enterdate id: claimdy Competing-risks regression No. of obs = 20,756 No. of subjects = 87 Failure event : resolved2 == 7 No. failed = 14 Competing events: (1) No. competing = 57 No. censored = 16 Wald chi2(9) = 1620.55 Log pseudolikelihood = -45.009945 Prob > chi2 = 0.0000 (Std. Err. adjusted for 87 clusters in claimdy) ------------------------------------------------------------------------------ | Robust _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.bullying | 1.167243 1.018178 1.15 0.252 -.8283493 3.162836 1.bdout_2 | -16.4309 1.002408 -16.39 0.000 -18.39559 -14.46622 1.bdout_3 | .3128215 .7729912 0.40 0.686 -1.202213 1.827856 viol | .5064316 .3091432 1.64 0.101 -.0994779 1.112341 icowsal | .1148364 .1666615 0.69 0.491 -.211814 .4414869 cumu10mid | -.4802709 .2456184 -1.96 0.051 -.9616742 .0011324 avgterg | -1.438623 .7947055 -1.81 0.070 -2.996217 .1189714 avgterv | 3.667996 1.440916 2.55 0.011 .8438523 6.492141 1.special | .6250076 .8436583 0.74 0.459 -1.028532 2.278548 ------------------------------------------------------------------------------ (1) resolved2 == 1 4 5 6 11 12 13 14
but based on the second model, i can still generate cif for bullying strategy dummy variable:
Array
Thanks in advance!
Best
Jiong
0 Response to stcox and stcrreg
Post a Comment