Hi guys!
I have a quick question regarding the CE results for VECM and performing Error Correction Equations manually (ie. reg ... ).
Running VEC on cointegrated time series USA GDP and Australia GDP.
Then running OLS Regression on Predicted Residuals of Reg USA, AUS.
Why are the red results not the same?
Why are the blue results not the same?
. vec aus usa, lag(1) rank(1)
Vector error-correction model
Sample: 1970q2 - 2000q4 Number of obs = 123
AIC = 3.162664
Log likelihood = -189.5039 HQIC = 3.209099
Det(Sigma_ml) = .0746914 SBIC = 3.276981
Equation Parms RMSE R-sq chi2 P>chi2
----------------------------------------------------------------
D_aus 2 .605562 0.4600 103.0638 0.0000
D_usa 2 .498621 0.5309 136.9459 0.0000
----------------------------------------------------------------
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
D_aus |
_ce1 |
L1. | -.106621 .0242331 -4.40 0.000 -.1541171 -.059125
|
_cons | -.0947774 .1456994 -0.65 0.515 -.380343 .1907882
-------------+----------------------------------------------------------------
D_usa |
_ce1 |
L1. | -.0616202 .0199536 -3.09 0.002 -.1007285 -.0225119
|
_cons | .1639928 .1199691 1.37 0.172 -.0711424 .399128
------------------------------------------------------------------------------
Cointegrating equations
Equation Parms chi2 P>chi2
-------------------------------------------
_ce1 1 1566.539 0.0000
-------------------------------------------
Identification: beta is exactly identified
Johansen normalization restriction imposed
------------------------------------------------------------------------------
beta | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_ce1 |
aus | 1 . . . . .
usa | -1.111995 .0280952 -39.58 0.000 -1.167061 -1.056929
_cons | 2.538856 . . . . .
------------------------------------------------------------------------------
. reg aus usa
Source | SS df MS Number of obs = 124
-------------+---------------------------------- F(1, 122) = 26925.45
Model | 38151.1204 1 38151.1204 Prob > F = 0.0000
Residual | 172.863839 122 1.41691672 R-squared = 0.9955
-------------+---------------------------------- Adj R-squared = 0.9955
Total | 38323.9843 123 311.577108 Root MSE = 1.1903
------------------------------------------------------------------------------
aus | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
usa | 1.000993 .0061003 164.09 0.000 .9889166 1.013069
_cons | -1.072372 .4032246 -2.66 0.009 -1.870596 -.274149
------------------------------------------------------------------------------
. predict e_hat, resid
. reg D.aus L.e_hat, r
Linear regression Number of obs = 123
F(1, 121) = 9.12
Prob > F = 0.0031
R-squared = 0.0645
Root MSE = .63081
------------------------------------------------------------------------------
| Robust
D.aus | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
e_hat |
L1. | -.1386206 .0459061 -3.02 0.003 -.2295038 -.0477374
|
_cons | .499631 .0568723 8.79 0.000 .3870372 .6122248
------------------------------------------------------------------------------
. reg D.usa L.e_hat, r
Linear regression Number of obs = 123
F(1, 121) = 0.00
Prob > F = 0.9914
R-squared = 0.0000
Root MSE = .5179
------------------------------------------------------------------------------
| Robust
D.usa | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
e_hat |
L1. | .0004075 .0376054 0.01 0.991 -.0740422 .0748572
|
_cons | .5074786 .0466928 10.87 0.000 .4150379 .5999194
------------------------------------------------------------------------------
They should be the same and I am not sure whether it is some trend or constraint option that VEC introduces in the command but any comments on this would be greatly appreciated!!
Thanks
Sam
Related Posts with Help on VECM
Very large t-statisticsDear all, I am performing cluster robust WLS and fixed effects models on a relatively small dataset…
Ommited because of collinearity even though 'collin' and 'vif' commands show no correlation.Dear all, I have a challenge that I cannot understand or deal with. When I run my regression I get a…
Reshape command with quarterly dataI would like to reshape my data from wide to long format. My headers are dates every quarter so 31-1…
Problem in generating simple mean and graphDear all, It might be a silly a question but I've a simple problem in generating a mean variable. I…
No observation error in areg using variables within a rangeHello there, have created three variables represing three classes (discrete) of travel times, naley…
Subscribe to:
Post Comments (Atom)
0 Response to Help on VECM
Post a Comment