My university has bought Stata 15.1MP with 12 cores.
I only include 12 variables in for tuples command, why the observation numbers are out of range? Should't More than 2 billion observations be allowed?
Here is the sample code and data, could anyone explain this? Thanks a lot!


Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float(c1 c2 c3) byte(c4 c5) float c6 byte(c7 c8 c9 c10) float c11 double y float x int id
.4201681  3.296207  14.13587 0 0 3.8728664 2 2 44 2  3.178054   54 0  1
.4201681  3.296207  14.13587 0 0 3.8728664 2 1 59 2  3.178054   76 0  1
.4201681  3.296207  14.13587 0 0 3.8728664 2 2 43 2  3.178054 68.5 0  1
.4201681  3.296207  14.13587 0 0 3.8728664 2 1 43 2  3.178054   49 0  1
.4201681  3.296207  14.13587 0 0 3.8728664 2 1 48 2  3.178054   76 0  1
      .6  5.588671         . 0 0 3.8728664 2 2 33 2 3.0445225   56 0  2
      .6  5.588671         . 0 0 3.8728664 2 1 58 2 3.0445225   72 0  2
      .6  5.588671         . 0 0 3.8728664 2 1 57 2 3.0445225   54 0  2
      .6  5.588671         . 0 0 3.8728664 2 1 54 2 3.0445225   75 1  2
      .6  5.588671         . 0 0 3.8728664 2 2 35 2 3.0445225   54 0  2
       1  6.269854  39.35821 1 0  7.760126 2 2 38 1  3.713572   81 0  4
       1  6.269854  39.35821 1 0  7.760126 2 1 43 1  3.713572   73 0  4
       1  6.269854  39.35821 1 0  7.760126 2 1 43 1  3.713572   80 0  4
       1  6.269854  39.35821 1 0  7.760126 2 2 43 1  3.713572   82 0  4
       1  6.269854  39.35821 1 0  7.760126 2 1 33 1  3.713572   78 0  4
     .95 4.5217886 .29449838 0 0  5.648974 2 1 60 5 3.0445225   47 0 11
     .95 4.5217886 .29449838 0 0  5.648974 2 1 47 5 3.0445225   55 0 11
     .95 4.5217886 .29449838 0 0  5.648974 2 2 34 5 3.0445225   47 0 11
     .95 4.5217886 .29449838 0 0  5.648974 2 1 53 5 3.0445225   52 0 11
     .95 4.5217886 .29449838 0 0  5.648974 2 2 39 5 3.0445225   47 0 11
.8333333   5.56452        52 0 0  5.080659 2 2 38 3  2.944439   65 0 13
.8333333   5.56452        52 0 0  5.080659 2 2 41 3  2.944439   80 0 13
.8333333   5.56452        52 0 0  5.080659 2 1 48 3  2.944439   64 0 13
.8333333   5.56452        52 0 0  5.080659 2 1 54 3  2.944439   76 0 13
.8333333   5.56452        52 0 0  5.080659 2 1 40 3  2.944439   76 0 13
       1  4.574711 2.1333334 0 0 3.8728664 2 1 54 1 2.1972246   85 0 24
       1  4.574711 2.1333334 0 0 3.8728664 2 2 42 1 2.1972246   68 0 24
       1  4.574711 2.1333334 0 0 3.8728664 2 1 55 1 2.1972246   83 0 24
       1  4.574711 2.1333334 0 0 3.8728664 2 2 38 1 2.1972246   72 0 24
       1  4.574711 2.1333334 0 0 3.8728664 2 1 54 1 2.1972246   72 0 24
.7735849  6.294971  .4524722 0 0  8.326396 2 1 60 1  3.988984   81 0 25
.7735849  6.294971  .4524722 0 0  8.326396 2 1 37 1  3.988984   65 0 25
.7735849  6.294971  .4524722 0 0  8.326396 2 1 48 1  3.988984   57 0 25
.7735849  6.294971  .4524722 0 0  8.326396 2 2 46 1  3.988984   75 0 25
.7735849  6.294971  .4524722 0 0  8.326396 2 2 36 1  3.988984   73 0 25
       1  4.348082 .18771826 0 0  5.559103 2 2 34 3  2.833213   62 0 29
       1  4.348082 .18771826 0 0  5.559103 2 1 41 3  2.833213   62 0 29
       1  4.348082 .18771826 0 0  5.559103 2 1 37 3  2.833213   59 0 29
       1  4.348082 .18771826 0 0  5.559103 2 2 54 3  2.833213   65 0 29
       1  4.348082 .18771826 0 0  5.559103 2 1 43 3  2.833213   47 0 29
.7619048 4.1311584  10.36379 0 0   7.27337 2 2 33 3 3.0910425   70 0 30
.7619048 4.1311584  10.36379 0 0   7.27337 2 1 57 3 3.0910425   87 0 30
.7619048 4.1311584  10.36379 0 0   7.27337 2 1 55 3 3.0910425   87 0 30
.7619048 4.1311584  10.36379 0 0   7.27337 2 2 55 3 3.0910425   62 0 30
.7619048 4.1311584  10.36379 0 0   7.27337 2 1 60 3 3.0910425   80 0 30
       1  3.851211 1.0779494 0 0  7.251749 1 2 57 1  2.772589   69 0 31
       1  3.851211 1.0779494 0 0  7.251749 1 2 39 1  2.772589   72 1 31
       1  3.851211 1.0779494 0 0  7.251749 1 1 53 1  2.772589   66 0 31
       1  3.851211 1.0779494 0 0  7.251749 1 1 60 1  2.772589   63 0 31
       1  3.851211 1.0779494 0 0  7.251749 1 1 49 1  2.772589   74 0 31
.7027027   6.02369 .40595105 0 1  7.302857 2 2 41 2  3.637586   70 0 37
.7027027   6.02369 .40595105 0 1  7.302857 2 1 47 2  3.637586   65 0 37
.7027027   6.02369 .40595105 0 1  7.302857 2 1 41 2  3.637586   81 0 37
.7027027   6.02369 .40595105 0 1  7.302857 2 1 60 2  3.637586   74 0 37
.7027027   6.02369 .40595105 0 1  7.302857 2 2 41 2  3.637586   74 0 37
.6969697  4.927254 .32009345 0 1  7.199678 2 1 57 3 3.5263605   82 0 38
.6969697  4.927254 .32009345 0 1  7.199678 2 2 33 3 3.5263605   77 0 38
.6969697  4.927254 .32009345 0 1  7.199678 2 1 55 3 3.5263605   84 0 38
.6969697  4.927254 .32009345 0 1  7.199678 2 1 60 3 3.5263605   85 0 38
.6969697  4.927254 .32009345 0 1  7.199678 2 2 55 3 3.5263605   75 0 38
       1   5.25942  .7263445 0 1  8.163983 1 1 43 4  3.367296   47 0 39
       1   5.25942  .7263445 0 1  8.163983 1 1 45 4  3.367296   55 1 39
       1   5.25942  .7263445 0 1  8.163983 1 2 38 4  3.367296   53 0 39
       1   5.25942  .7263445 0 1  8.163983 1 1 38 4  3.367296   62 0 39
       1   5.25942  .7263445 0 1  8.163983 1 2 43 4  3.367296   67 0 39
       1  5.204007  2.397351 0 0  8.326396 1 1 44 4 3.0445225   47 1 41
       1  5.204007  2.397351 0 0  8.326396 1 2 45 4 3.0445225   60 1 41
       1  5.204007  2.397351 0 0  8.326396 1 2 43 4 3.0445225   76 0 41
       1  5.204007  2.397351 0 0  8.326396 1 1 57 4 3.0445225   87 0 41
       1  5.204007  2.397351 0 0  8.326396 1 1 42 4 3.0445225   47 0 41
     .72  6.396729 1.7342253 1 0  6.976133 4 2 44 3 3.2580965   81 0 42
     .72  6.396729 1.7342253 1 0  6.976133 4 2 39 3 3.2580965   87 0 42
     .72  6.396729 1.7342253 1 0  6.976133 4 1 33 3 3.2580965   54 0 42
     .72  6.396729 1.7342253 1 0  6.976133 4 1 44 3 3.2580965   80 0 42
     .72  6.396729 1.7342253 1 0  6.976133 4 1 54 3 3.2580965   78 0 42
       1  5.187944 18.360825 0 0  6.264597 4 2 33 4 2.6390574   76 0 44
       1  5.187944 18.360825 0 0  6.264597 4 1 56 4 2.6390574   75 0 44
       1  5.187944 18.360825 0 0  6.264597 4 1 51 4 2.6390574   67 0 44
       1  5.187944 18.360825 0 0  6.264597 4 2 33 4 2.6390574   70 0 44
       1  5.187944 18.360825 0 0  6.264597 4 1 48 4 2.6390574   77 0 44
.4347826  5.617498 .53189015 0 0   6.13027 4 2 47 2  3.178054   72 0 45
.4347826  5.617498 .53189015 0 0   6.13027 4 2 46 2  3.178054   68 0 45
.4347826  5.617498 .53189015 0 0   6.13027 4 1 60 2  3.178054   73 0 45
.4347826  5.617498 .53189015 0 0   6.13027 4 1 60 2  3.178054   87 0 45
.4347826  5.617498 .53189015 0 0   6.13027 4 1 46 2  3.178054   84 0 45
     .76  5.056246     .1625 0 0  7.036149 2 2 47 5 3.2580965   55 1 46
     .76  5.056246     .1625 0 0  7.036149 2 1 34 5 3.2580965   49 1 46
     .76  5.056246     .1625 0 0  7.036149 2 1 59 5 3.2580965   47 1 46
     .76  5.056246     .1625 0 0  7.036149 2 2 44 5 3.2580965   68 0 46
     .76  5.056246     .1625 0 0  7.036149 2 1 58 5 3.2580965   47 0 46
       1  4.684628  .8477162 0 0  6.322296 2 1 35 2  2.772589   58 0 50
       1  4.684628  .8477162 0 0  6.322296 2 2 33 2  2.772589   72 0 50
       1  4.684628  .8477162 0 0  6.322296 2 1 51 2  2.772589   78 0 50
       1  4.684628  .8477162 0 0  6.322296 2 1 49 2  2.772589   77 0 50
       1  4.684628  .8477162 0 0  6.322296 2 2 43 2  2.772589   64 0 50
       1  5.966865  .4755262 1 0  6.678329 4 2 43 5  3.178054   80 0 51
       1  5.966865  .4755262 1 0  6.678329 4 1 43 5  3.178054   75 0 51
       1  5.966865  .4755262 1 0  6.678329 4 2 38 5  3.178054   72 0 51
       1  5.966865  .4755262 1 0  6.678329 4 1 43 5  3.178054   77 0 51
       1  5.966865  .4755262 1 0  6.678329 4 1 33 5  3.178054   62 0 51
end

cap drop pvalue IV
cap drop pvalueMin numOfIV
generate pvalue = .
generate IV = ""
tuples  c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
quietly forvalues i = 1/`ntuples' {
     replace IV = "`tuple`i''" in `i'
     reg y   i.x   `tuple`i'' ,vce(cluster id )
     replace pvalue = el(r(table),4,1) in `i'
     }
dis `ntuples'