I’m working with xtabond2 command in Stata. I read David Roodman’s papers, Mr. Sebastian Kripfganz’s presentation notes and I also read almost all threads about system GMM in the forum. However, I suspect that my coding is wrong and I’m doing something wrong. So, could you please help?
Here is my study: I’m working on carbon emissions convergence based on Solow-Swan model. I’m trying to estimate convergence equation with 29 countries and 11 data points (5 year averages between 1965 and 2014). However, I cannot find any significant GDP coefficient for conditional convergence. FE and OLS gives meaningful results and I know that that the system GMM coefficient should be lying between them.
My variables are carbon emissions per capita, gdp per capita and population growth and gross savings. Population growth and gross domestic savings come from theoretical derivations and I treat them as exogenous variable.
Specifically, my xtabond2 code as follows:
Code:
xtabond2 lncopc l.lncopc lngdppc lngdsav lnpopgrate t1-t11, gmm(l.lncopc l.lngdppc, lag (2 8) equation(diff) collapse) iv(lngdsav lnpopgrate, equation(level)) iv(t1-t11, equation(level)) robust small
Code:
xtabond2 lncopc l.lncopc lngdppc lngdsav lnpopgrate t1-t11, gmm(l.lncopc l.lngdppc, lag (2 8) equation(diff) collapse) iv(lngdsav lnpopgrate
> , equation(level)) iv(t1-t11, equation(level)) robust small
Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate robust weighting matrix for Hansen test.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, one-step system GMM
------------------------------------------------------------------------------
Group variable: country1 Number of obs = 219
Time variable : year2 Number of groups = 27
Number of instruments = 26 Obs per group: min = 1
F(15, 26) = 34.63 avg = 8.11
Prob > F = 0.000 max = 10
------------------------------------------------------------------------------
| Robust
lncopc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lncopc |
L1. | .8322342 .0626964 13.27 0.000 .7033598 .9611085
|
lngdppc | -.0855172 .1160706 -0.74 0.468 -.3241037 .1530694
lngdsav | .1367784 .1342324 1.02 0.318 -.1391403 .412697
lnpopgrate | .0084767 .0185688 0.46 0.652 -.029692 .0466454
t1 | 0 (omitted)
t2 | .1008801 .1818593 0.55 0.584 -.272937 .4746972
t3 | .2263383 .0878163 2.58 0.016 .0458293 .4068472
t4 | .1056935 .0771406 1.37 0.182 -.0528712 .2642582
t5 | .0392374 .0825815 0.48 0.639 -.1305113 .2089861
t6 | .1132047 .0556357 2.03 0.052 -.0011561 .2275655
t7 | .1107995 .0393627 2.81 0.009 .0298883 .1917106
t8 | .1224347 .0500722 2.45 0.022 .0195098 .2253596
t9 | .1421915 .0231602 6.14 0.000 .0945851 .1897979
t10 | .0998298 .0176985 5.64 0.000 .06345 .1362096
t11 | 0 (omitted)
_cons | .7242149 .8193276 0.88 0.385 -.959937 2.408367
------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.lncopc L.lngdppc) collapsed
Instruments for levels equation
Standard
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
lngdsav lnpopgrate
_cons
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.37 Pr > z = 0.018
Arellano-Bond test for AR(2) in first differences: z = -1.09 Pr > z = 0.276
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(10) = 14.00 Prob > chi2 = 0.173
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(10) = 11.88 Prob > chi2 = 0.293
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
iv(lngdsav lnpopgrate, eq(level))
Hansen test excluding group: chi2(8) = 10.76 Prob > chi2 = 0.216
Difference (null H = exogenous): chi2(2) = 1.12 Prob > chi2 = 0.572
iv(t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11, eq(level))
Hansen test excluding group: chi2(1) = 3.36 Prob > chi2 = 0.067
Difference (null H = exogenous): chi2(9) = 8.52 Prob > chi2 = 0.483
.Code:
xtabond2 lncopc l.lncopc lngdppc lngdsav lnpopgrate t2-t11, gmm(l.lncopc l.lngdppc, lag (2 8) equation(diff) collapse) iv(lngdsav lnpopgrate
> , equation(level)) iv(t1-t11, equation(level)) robust small
Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
t9 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate robust weighting matrix for Hansen test.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, one-step system GMM
------------------------------------------------------------------------------
Group variable: country1 Number of obs = 219
Time variable : year2 Number of groups = 27
Number of instruments = 26 Obs per group: min = 1
F(13, 26) = 40.35 avg = 8.11
Prob > F = 0.000 max = 10
------------------------------------------------------------------------------
| Robust
lncopc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lncopc |
L1. | .8322342 .0623899 13.34 0.000 .70399 .9604784
|
lngdppc | -.0855172 .115503 -0.74 0.466 -.322937 .1519027
lngdsav | .1367784 .133576 1.02 0.315 -.137791 .4113478
lnpopgrate | .0084767 .018478 0.46 0.650 -.0295054 .0464588
t2 | -.0413114 .1707277 -0.24 0.811 -.3922472 .3096244
t3 | .0841467 .0787222 1.07 0.295 -.0776691 .2459626
t4 | -.036498 .0672219 -0.54 0.592 -.1746747 .1016786
t5 | -.1029541 .0717872 -1.43 0.163 -.2505147 .0446065
t6 | -.0289868 .0469637 -0.62 0.542 -.125522 .0675484
t7 | -.031392 .0274301 -1.14 0.263 -.0877754 .0249913
t8 | -.0197568 .0392182 -0.50 0.619 -.100371 .0608573
t10 | -.0423617 .0166714 -2.54 0.017 -.0766303 -.0080932
t11 | -.1421915 .0230469 -6.17 0.000 -.1895651 -.0948179
_cons | .8664065 .8084108 1.07 0.294 -.7953058 2.528119
------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.lncopc L.lngdppc) collapsed
Instruments for levels equation
Standard
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
lngdsav lnpopgrate
_cons
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.37 Pr > z = 0.018
Arellano-Bond test for AR(2) in first differences: z = -1.09 Pr > z = 0.276
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(12) = 14.00 Prob > chi2 = 0.300
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(12) = 11.88 Prob > chi2 = 0.455
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
iv(lngdsav lnpopgrate, eq(level))
Hansen test excluding group: chi2(10) = 10.76 Prob > chi2 = 0.376
Difference (null H = exogenous): chi2(2) = 1.12 Prob > chi2 = 0.572
iv(t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11, eq(level))
Hansen test excluding group: chi2(3) = 3.36 Prob > chi2 = 0.340
Difference (null H = exogenous): chi2(9) = 8.52 Prob > chi2 = 0.483
.I would be appreciated in you answer my questions.
Thank you in advance!
Esra.
0 Response to System GMM for convergence equations
Post a Comment