Dear Statalist,

I am running a pooled panel Heckman two-step estimation to find determinants of insurance purchases. A signficant effect of the inverse mills ratio (imr1) below indicates a selection problem and that Heckman is preferred over OLS.

Code:
*1st stage probit model
probit y_seen x18 i.x19 i.x20 round i.x3 x4 x5 x6 x7 i.x8 x9 i.x10##i.x11 i.x12 x13 x14 ///
i.x15##c.x16 x17 [pweight=pweight], vce(cluster HHID)
margins, dydx(*) post
Code:
Average marginal effects                        Number of obs     =        574
Model VCE    : Robust

Expression   : Pr(y_seen), predict()
dy/dx w.r.t. : x18 1.x19 1.x20 round 1.x3 x4 x5 x6 x7 1.x8 x9 1.x10 1.x11 1.x12 x13 x14 1.x15 x16 x17

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         x18 |   .0143955   .0015807     9.11   0.000     .0112974    .0174936
       1.x19 |  -.0449697   .0218515    -2.06   0.040    -.0877979   -.0021416
       1.x20 |  -.1017704   .0269623    -3.77   0.000    -.1546156   -.0489252
       round |  -.0479061   .0173747    -2.76   0.006    -.0819598   -.0138523
        1.x3 |  -.0209526   .0290927    -0.72   0.471    -.0779732    .0360681
          x4 |   .0000826   .0000152     5.43   0.000     .0000528    .0001124
          x5 |   .0042392   .0131803     0.32   0.748    -.0215938    .0300721
          x6 |   .0052349   .0060947     0.86   0.390    -.0067104    .0171802
          x7 |   .0043644   .0016943     2.58   0.010     .0010435    .0076852
        1.x8 |  -.0120274   .0366869    -0.33   0.743    -.0839324    .0598777
          x9 |   .0508862    .013231     3.85   0.000      .024954    .0768184
       1.x10 |   .0865615   .0383121     2.26   0.024     .0114712    .1616518
       1.x11 |    .010413   .0292698     0.36   0.722    -.0469548    .0677807
       1.x12 |  -.0040397   .0392662    -0.10   0.918    -.0810001    .0729207
         x13 |  -.0221218   .0120994    -1.83   0.067    -.0458363    .0015927
         x14 |   .0001126    .000437     0.26   0.797     -.000744    .0009691
       1.x15 |  -.0348978   .0388583    -0.90   0.369    -.1110588    .0412631
         x16 |   -.001754   .0004966    -3.53   0.000    -.0027274   -.0007806
         x17 |   .0290123   .0151913     1.91   0.056     -.000762    .0587867
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
Code:
qui probit y_seen x18 i.x19 i.x20 round i.x3 x4 x5 x6 x7 i.x8 x9 i.x10##i.x11 i.x12 x13 x14 ///
i.x15##c.x16 x17 [pweight=pweight], vce(cluster HHID)
predict p1, xb //calculates predicted value of \beta*X from selection regression
replace p1=-p1 //calculates -Z_i\gamma
generate phi = (1/sqrt(2*_pi))*exp(-(p1^2/2)) //normal distribution density function
generate capphi = normal(p1) //cumulative density function
generate imr1 = phi/(1-capphi) //calculates Inverse Mills ratio

*2nd stage Heckman model: truncated and pooled OLS
reg y x1 x2 round i.x3 x4 x5 x6 x7 i.x8 x9 i.x10##i.x11 i.x12 x13 x14 i.x15##c.x16 x17 imr1 ///
[pweight=pweight], vce(cluster HHID)
Code:
Linear regression                               Number of obs     =        472
                                                F(21, 124)        =      64.07
                                                Prob > F          =     0.0000
                                                R-squared         =     0.4332
                                                Root MSE          =     .58905

                                 (Std. Err. adjusted for 125 clusters in HHID)
------------------------------------------------------------------------------
             |               Robust
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |   1.086289   .0920832    11.80   0.000     .9040309    1.268548
          x2 |  -1.285324   1.143381    -1.12   0.263    -3.548395    .9777475
       round |   -.103336   .0590195    -1.75   0.082    -.2201521    .0134801
        1.x3 |   -.083443   .0714037    -1.17   0.245     -.224771     .057885
          x4 |   -.000065   .0000324    -2.00   0.047    -.0001292   -8.20e-07
          x5 |  -.0466427    .023452    -1.99   0.049    -.0930609   -.0002246
          x6 |   .0381533   .0112903     3.38   0.001     .0158066       .0605
          x7 |   .0170921   .0034209     5.00   0.000     .0103212     .023863
        1.x8 |  -.0287251   .0753869    -0.38   0.704    -.1779369    .1204868
          x9 |  -.0255863   .0329273    -0.78   0.439    -.0907586     .039586
       1.x10 |  -.1244701   .1442971    -0.86   0.390    -.4100745    .1611344
       1.x11 |   .0221183   .1491671     0.15   0.882    -.2731251    .3173617
             |
     x10#x11 |
        1 1  |    .188353   .1639117     1.15   0.253    -.1360742    .5127803
             |
       1.x12 |   .2493369    .069622     3.58   0.000     .1115354    .3871384
         x13 |   .0115066   .0247547     0.46   0.643    -.0374899    .0605032
         x14 |    .001514   .0008878     1.71   0.091    -.0002433    .0032712
       1.x15 |    .155291   .2137375     0.73   0.469    -.2677555    .5783375
         x16 |   -.004325   .0031301    -1.38   0.170    -.0105205    .0018704
             |
   x15#c.x16 |
          1  |    .003758   .0035941     1.05   0.298    -.0033558    .0108718
             |
         x17 |   .0196864   .0373166     0.53   0.599    -.0541735    .0935464
        imr1 |   .2430458   .1113475     2.18   0.031     .0226579    .4634338
       _cons |   13.41441   12.27384     1.09   0.277    -10.87896    37.70777
------------------------------------------------------------------------------
When comparing the two-step precedure with the MLE heckman, questions arise now:
(1) Is the selection equation only based on the truncated sample with y>0? Why? This does not make any sense as there is no variation in y!?
(2) Can this explain why the inverse mills ratio (selection effect) is here not significantly different from zero as indicated by the Wald test that cannot reject the null hypothesis of rho=0?
Code:
heckman y x1 x2 round i.x3 x4 x5 x6 x7 i.x8 x9 i.x10##i.x11 i.x12 x13 x14 i.x15##c.x16 x17 /// 
[pweight=pweight], ///
select(y_seen=x18 i.x19 i.x20 round i.x3 x4 x5 x6 x7 i.x8 x9 i.x10##i.x11 i.x12 x13 x14 ///
i.x15##c.x16 x17) vce(cluster HHID)
Code:
Heckman selection model                         Number of obs     =        574
(regression model with sample selection)              Selected    =        472
                                                      Nonselected =        102

                                                Wald chi2(20)     =    1384.02
Log pseudolikelihood = -519.9681                Prob > chi2       =     0.0000

                                 (Std. Err. adjusted for 126 clusters in HHID)
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
y            |
          x1 |   1.079878   .0870764    12.40   0.000     .9092117    1.250545
          x2 |  -1.146409   1.003011    -1.14   0.253    -3.112275    .8194557
       round |  -.1038978   .0547836    -1.90   0.058    -.2112717     .003476
        1.x3 |  -.0767749    .073642    -1.04   0.297    -.2211107    .0675608
          x4 |  -.0000586   .0000311    -1.89   0.059    -.0001196    2.31e-06
          x5 |  -.0532746   .0271382    -1.96   0.050    -.1064644   -.0000848
          x6 |   .0335714   .0143009     2.35   0.019     .0055421    .0616007
          x7 |   .0169975   .0032445     5.24   0.000     .0106384    .0233566
        1.x8 |  -.0426975   .0950499    -0.45   0.653    -.2289919     .143597
          x9 |  -.0154203   .0327672    -0.47   0.638    -.0796428    .0488022
       1.x10 |  -.0930904   .1506446    -0.62   0.537    -.3883484    .2021676
       1.x11 |   .0727406   .1849587     0.39   0.694    -.2897718    .4352531
             |
     x10#x11 |
        1 1  |    .165025   .1665951     0.99   0.322    -.1614954    .4915454
             |
       1.x12 |   .2292365   .0845575     2.71   0.007     .0635068    .3949662
         x13 |  -.0052651   .0451982    -0.12   0.907     -.093852    .0833218
         x14 |   .0015364   .0009399     1.63   0.102    -.0003058    .0033786
       1.x15 |   .1121501   .2073449     0.54   0.589    -.2942384    .5185386
         x16 |  -.0061802   .0047053    -1.31   0.189    -.0154025     .003042
             |
   x15#c.x16 |
          1  |   .0056411   .0053074     1.06   0.288    -.0047612    .0160434
             |
         x17 |   .0331053   .0396846     0.83   0.404    -.0446752    .1108857
       _cons |    11.9172   10.75137     1.11   0.268    -9.155095     32.9895
-------------+----------------------------------------------------------------
y_seen       |
         x18 |   .0954856    .023458     4.07   0.000     .0495088    .1414624
       1.x19 |  -.4510818   .1957512    -2.30   0.021     -.834747   -.0674166
       1.x20 |  -.5628401   .4688995    -1.20   0.230    -1.481866     .356186
       round |  -.3500378   .1178559    -2.97   0.003    -.5810312   -.1190445
        1.x3 |  -.0514181   .2962523    -0.17   0.862    -.6320619    .5292257
          x4 |   .0006573   .0001697     3.87   0.000     .0003247    .0009898
          x5 |  -.0264533   .1181423    -0.22   0.823    -.2580079    .2051012
          x6 |   .0606577   .0973045     0.62   0.533    -.1300557     .251371
          x7 |   .0344755    .012954     2.66   0.008     .0090862    .0598649
        1.x8 |  -.1359341   .3216742    -0.42   0.673     -.766404    .4945357
          x9 |   .4386742   .1225535     3.58   0.000     .1984737    .6788748
       1.x10 |   .1281608   .3533009     0.36   0.717    -.5642962    .8206178
       1.x11 |  -.1410168   .6800977    -0.21   0.836    -1.473984     1.19195
             |
     x10#x11 |
        1 1  |   .4539155    .889635     0.51   0.610    -1.289737    2.197568
             |
       1.x12 |  -.2686829   .5875363    -0.46   0.647    -1.420233     .882867
         x13 |  -.1141443    .230882    -0.49   0.621    -.5666646     .338376
         x14 |   .0013928   .0038212     0.36   0.715    -.0060966    .0088822
       1.x15 |  -.1661187   .6020005    -0.28   0.783    -1.346018    1.013781
         x16 |  -.0155677   .0053069    -2.93   0.003     -.025969   -.0051663
             |
   x15#c.x16 |
          1  |   .0027121   .0076237     0.36   0.722    -.0122302    .0176543
             |
         x17 |   .2812853   .1835776     1.53   0.125    -.0785201    .6410908
       _cons |  -7.998821   1.645493    -4.86   0.000    -11.22393   -4.773715
-------------+----------------------------------------------------------------
     /athrho |   1.003006   1.329345     0.75   0.451    -1.602462    3.608475
    /lnsigma |  -.5072924   .1124413    -4.51   0.000    -.7276732   -.2869115
-------------+----------------------------------------------------------------
         rho |   .7628539   .5557379                     -.9220383     .998533
       sigma |   .6021237   .0677035                      .4830316    .7505781
      lambda |   .4593324   .3766132                     -.2788158    1.197481
------------------------------------------------------------------------------
Wald test of indep. eqns. (rho = 0): chi2(1) =     0.57   Prob > chi2 = 0.4505
Code:
margins, dydx(*) expression(normal(predict(xbsel))) //for AMEs of selection equation
Code:
Average marginal effects                        Number of obs     =        472
Model VCE    : Robust

Expression   : normal(predict(xbsel))
dy/dx w.r.t. : x1 x2 round 1.x3 x4 x5 x6 x7 1.x8 x9 1.x10 1.x11 1.x12 x13 x14 1.x15 x16 x17 x18 1.x19 1.x20

------------------------------------------------------------------------------
             |            Delta-method
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |          0  (omitted)
          x2 |          0  (omitted)
       round |  -.0344662   .0111654    -3.09   0.002      -.05635   -.0125823
        1.x3 |  -.0051114   .0298637    -0.17   0.864    -.0636432    .0534204
          x4 |   .0000647   .0000153     4.22   0.000     .0000347    .0000948
          x5 |  -.0026047   .0115287    -0.23   0.821    -.0252005    .0199911
          x6 |   .0059726   .0093806     0.64   0.524    -.0124131    .0243583
          x7 |   .0033946   .0012834     2.64   0.008     .0008791    .0059101
        1.x8 |  -.0128698   .0297024    -0.43   0.665    -.0710854    .0453457
          x9 |   .0431937   .0113826     3.79   0.000     .0208843    .0655031
       1.x10 |   .0406141   .0486084     0.84   0.403    -.0546566    .1358847
       1.x11 |   .0174241   .0212462     0.82   0.412    -.0242176    .0590658
       1.x12 |  -.0264907   .0569879    -0.46   0.642     -.138185    .0852036
         x13 |  -.0112391   .0229835    -0.49   0.625     -.056286    .0338078
         x14 |   .0001371    .000378     0.36   0.717    -.0006037     .000878
       1.x15 |   -.006072   .0457602    -0.13   0.894    -.0957605    .0836164
         x16 |  -.0013274   .0004467    -2.97   0.003    -.0022029   -.0004518
         x17 |   .0276965   .0172296     1.61   0.108    -.0060728    .0614658
         x18 |   .0094019   .0026424     3.56   0.000      .004223    .0145808
       1.x19 |  -.0441527   .0200581    -2.20   0.028    -.0834659   -.0048395
       1.x20 |  -.0544046   .0450362    -1.21   0.227     -.142674    .0338648
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
Or did I do anything else wrong?
Any help is highly appreciated!
Thanks