Hope everything's fine on your side!
I have a dataset having as inputs: the id of products, quarters, Year corresponding to quarter, sales, standard units (quantity of units sold) and price. All data are quarterly and in quarterly format:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(idproduct trimestre) double(salesmnf stdunits) float(price Year trimestre_numerico log_sales) 309 220 549428.8959562927 208530 2.6778486 2015 1 13.216635 309 221 1657635.6735686143 621990 2.62871 2015 2 14.320903 309 222 2361742.0307672094 879120 2.787183 2015 3 14.67491 309 223 2708969.8677070346 982620 2.783677 2015 4 14.81208 967 184 2396473.630281323 39269 50.12922 2006 1 14.689508 967 185 2660241.1525705503 57842 49.52799 2006 2 14.793927 967 186 5219852.680998579 109956 49.0127 2006 3 15.46798 967 187 7334794.353897563 152567 48.83638 2006 4 15.80814 967 188 8881935.269550895 178135 50.39701 2007 1 15.99953 967 189 10233512.188730493 206869 49.77826 2007 2 16.141178 967 190 11532105.380502779 232399 49.04084 2007 3 16.260645 967 191 12916953.279701477 262324 48.3155 2007 4 16.374052 967 192 14688671.884616973 282129 50.49795 2008 1 16.502586 967 193 15365200.16396829 290896 50.91996 2008 2 16.547615 967 194 16091061.009136373 292949 52.28841 2008 3 16.593775 967 195 17345455.968860414 301834 54.58015 2008 4 16.66884 967 196 18974541.294351768 306890 58.12845 2009 1 16.758608 967 197 18328205.87957345 288580 58.31976 2009 2 16.723951 967 198 17651794.01652645 272667 57.03833 2009 3 16.686348 967 199 17650483.941940885 267862 56.56985 2009 4 16.686274 967 200 18493158.12872699 258281 58.84344 2010 1 16.732912 967 201 17992114.925367545 244269 58.63688 2010 2 16.705444 967 202 16473093.039148297 195666 58.87276 2010 3 16.617239 967 203 16131722.198414207 181157 60.02505 2010 4 16.596298 967 204 16433463.564012699 180565 60.16851 2011 1 16.61483 967 205 16487795.5803066 183904 68.510704 2011 2 16.618132 967 206 16496828.16649505 187355 73.7523 2011 3 16.61868 967 207 21155477.203739986 242950 72.24733 2011 4 16.867409 967 208 23068815.958713137 269471 70.42476 2012 1 16.953993 967 209 22378351.899928845 263774 80.03603 2012 2 16.923605 967 210 20671351.806722738 244183 80.17732 2012 3 16.84426 967 211 22946088.259303723 241641 90.13503 2012 4 16.948658 967 212 22833179.071655598 241431 78.87 2013 1 16.943726 967 213 25121501.836163506 236696 101.20883 2013 2 17.039234 967 214 27496452.72694253 240656 108.7187 2013 3 17.129568 967 215 31654405.740024228 239841 125.38672 2013 4 17.270388 967 216 28668090.011773463 201054 136.14319 2014 1 17.171295 967 217 28841873.52265626 201735 135.61485 2014 2 17.17734 967 218 32743869.963989224 197636 156.6265 2014 3 17.304226 967 219 34136347.46704216 205247 157.1359 2014 4 17.345873 967 220 30254727.633742694 166223 174.6888 2015 1 17.225163 967 221 29174848.65959489 156821 177.4915 2015 2 17.188818 967 222 30737620.45007514 152585 192.7502 2015 3 17.240997 967 223 30158653.1769133 149513 193.11697 2015 4 17.221983 968 197 2376854.021345326 69235 33.1783 2009 2 14.68129 968 198 3890580.543986951 115520 32.08473 2009 3 15.17407 968 199 5250787.847562533 157870 31.529097 2009 4 15.473888 968 200 7330260.977733087 211404 33.04153 2010 1 15.807522 968 201 8450960.750602767 244419 32.825207 2010 2 15.94979 968 202 9933943.46897207 287766 32.776993 2010 3 16.111467 968 203 12384495.526179137 358261 33.805927 2010 4 16.331955 968 204 13200848.13245852 377183 33.89235 2011 1 16.395792 968 205 14100907.796997774 410218 32.42119 2011 2 16.46175 968 206 15002854.33816764 456741 30.845716 2011 3 16.52375 968 207 3699298.846252881 115634 30.78887 2011 4 15.123653 968 208 233712.83927827814 7215 39.23624 2012 1 12.36185 968 209 4967673.526070839 150135 30.9579 2012 2 15.418462 968 210 8852601.338529933 272060 30.249664 2012 3 15.996222 968 211 12473714.221688677 345016 33.543846 2012 4 16.339134 968 212 15596767.159814764 431832 33.378513 2013 1 16.562574 968 213 18959592.999042645 465392 37.69897 2013 2 16.75782 968 214 22048360.293348596 500569 40.76159 2013 3 16.908749 968 215 27938974.656602535 546145 46.65392 2013 4 17.145533 968 216 26750443.86863454 484317 49.64977 2014 1 17.102062 968 217 26878713.961782422 483588 49.66882 2014 2 17.106846 968 218 33266045.939542584 514912 61.17122 2014 3 17.320047 968 219 35334039.34748898 548088 56.82569 2014 4 17.380358 968 220 31133623.33147834 439270 67.92824 2015 1 17.2538 968 221 30459023.362540193 423134 63.56718 2015 2 17.231894 968 222 33996678.285481915 434284 68.73748 2015 3 17.341774 968 223 34801448.3291206 445275 74.72015 2015 4 17.36517 4834 186 17311388.39029362 16889139 54.8011 2006 3 16.666876 4834 187 1388973.0942330845 1288925 55.33047 2006 4 14.144075 4834 188 1387120.8229355365 1534965 53.47997 2007 1 14.14274 4834 189 2874908.2771308306 3292322 32.31376 2007 2 14.871531 4834 190 3757407.736264723 4393833 32.17697 2007 3 15.13924 4834 191 2843466.347520378 3702495 31.510515 2007 4 14.860535 4834 192 998555.2974059999 1400908 31.310276 2008 1 13.814065 4834 193 114041.88963551621 145971 30.9932 2008 2 11.644321 4834 194 3210.9667879325075 2800 45.42096 2008 3 8.074327 4834 195 319.2018654527965 2 159.60094 2008 4 5.765824 4834 196 408.46208155762787 810 .5042742 2009 1 6.012399 6068 176 140489289.6538338 2426268 30.1741 2004 1 18.760641 6068 177 141706823.49164075 2321866 32.704742 2004 2 18.76927 6068 178 139233298.766628 2263469 32.711693 2004 3 18.751661 6068 179 138094566.12637913 2256874 32.504047 2004 4 18.74345 6068 180 146198672.40413287 2191173 36.32059 2005 1 18.800476 6068 181 144707082.56484634 2163173 38.142166 2005 2 18.790222 6068 182 156916892.148992 2145103 41.4885 2005 3 18.871227 6068 183 149037388.86023295 2134771 42.89772 2005 4 18.819708 6068 184 150169842.8261422 2146745 40.87637 2006 1 18.827278 6068 185 150358546.68755642 2119427 44.96695 2006 2 18.828533 6068 186 147726275.7866978 2102578 37.85888 2006 3 18.810871 6068 187 157270542.50865793 2148630 41.68524 2006 4 18.873478 6068 188 155489053.4775696 2131831 39.23389 2007 1 18.862085 6068 189 155756948.65891987 2146397 41.88565 2007 2 18.863808 6068 190 161417564.39199463 2142104 43.45609 2007 3 18.899506 6068 191 166036535.2769161 2177906 43.81662 2007 4 18.92772 6068 192 173477518.29809624 2245182 47.75566 2008 1 18.97156 6068 193 175359045.69731742 2288285 51.28833 2008 2 18.982346 end format %tq trimestre
Thanks,
Federico
0 Response to Deseasonalize data
Post a Comment