In Stata 16, the code below cannot run normally, but in Stata 15 and Stata 13, the code can run correctly, however, the results between them is different.
Which result should I believe?
* Example generated by -dataex-. To install: ssc install dataex clear input double(dv id serial) float(iv med mod1 newid) 4 1 1 .12499996 .5486109 -.05694437 1 4 1 2 -.07500005 -.17361127 -.05694437 1 4 1 3 -.07500005 .5486109 -.05694437 1 3.8 1 4 -.07500005 -.06250016 -.05694437 1 4 1 5 -.07500005 .3263887 -.05694437 1 3 1 6 -.07500005 -.3958335 -.05694437 1 4 1 7 .325 -.3958335 -.05694437 1 4 1 8 -.07500005 -.3958335 -.05694437 1 3.2 2 1 1.725 -.4375001 .14305563 2 3.7 2 2 .725 -.3819445 .14305563 2 3.7 2 3 -.6750001 .006944391 .14305563 2 3.4 2 4 -.07500005 .2291666 .14305563 2 3.3 2 5 -1.075 -.54861116 .14305563 2 3 2 6 .325 .2291666 .14305563 2 4.7 2 7 -.27500004 .4513888 .14305563 2 5 2 8 -.6750001 .4513888 .14305563 2 4 3 1 -.125 -.013888836 -.3569444 3 3.5 3 2 .075 -.013888836 -.3569444 3 3.8 3 3 -.125 -.013888836 -.3569444 3 3.6 3 4 -.125 .09722228 -.3569444 3 3.8 3 5 .075 -.013888836 -.3569444 3 4 3 6 .075 -.013888836 -.3569444 3 3.8 3 7 .075 -.013888836 -.3569444 3 4 3 8 .075 -.013888836 -.3569444 3 3.2 4 1 -.17142864 -.007936531 -.4569444 4 3.7 4 2 -.7714286 .04761903 -.4569444 4 2.7 4 3 .02857137 -.06349209 -.4569444 4 2.2 4 4 .4285714 -.11904764 -.4569444 4 2.4 4 5 .6285714 .10317458 -.4569444 4 2.9 4 6 .22857137 .3253968 -.4569444 4 . 4 7 . . -.4569444 4 3.8 4 8 -.3714286 -.2857143 -.4569444 4 3.9 5 1 .025000047 .58333325 -.15694436 5 4.3 5 2 -.17499995 .02777767 -.15694436 5 4.1 5 3 -.17499995 .4166666 -.15694436 5 3.4 5 4 .025000047 -.25000012 -.15694436 5 3.5 5 5 .425 -.3611112 -.15694436 5 3.8 5 6 .22500005 -.19444455 -.15694436 5 3.1 5 7 -.17499995 -.25000012 -.15694436 5 4.3 5 8 -.17499995 .02777767 -.15694436 5 4 6 1 .7000001 -.08333354 .14305563 6 4.2 6 2 .3000001 .472222 .14305563 6 4 6 3 .1000001 .027777566 .14305563 6 3.6 6 4 -.2999999 -.08333354 .14305563 6 3.3 6 5 -.2999999 -.08333354 .14305563 6 3.8 6 6 -.2999999 -.1388891 .14305563 6 3.3 6 7 .1000001 -.08333354 .14305563 6 3.3 6 8 -.2999999 -.02777799 .14305563 6 3.8 7 1 -.0999999 .06250016 .14305563 7 3.5 7 2 -.0999999 .3402779 .14305563 7 3.3 7 3 -.0999999 .11805572 .14305563 7 2.8 7 4 -.0999999 -.1041665 .14305563 7 3 7 5 .3000001 -.1041665 .14305563 7 3 7 6 .1000001 -.1041665 .14305563 7 3.2 7 7 .1000001 -.1041665 .14305563 7 3 7 8 -.0999999 -.1041665 .14305563 7 . 8 1 . . .4430556 8 . 8 2 . . .4430556 8 4.5 8 3 .033333253 -.111111 .4430556 8 3.6 8 4 -.3666667 -.111111 .4430556 8 3.4 8 5 .033333253 -.05555545 .4430556 8 3.1 8 6 -.16666675 .22222233 .4430556 8 3.4 8 7 .43333325 .16666678 .4430556 8 3.6 8 8 .033333253 -.111111 .4430556 8 4.1 9 1 .12500003 .3680556 -.05694437 9 4.6 9 2 .12500003 .47916675 -.05694437 9 4.5 9 3 -.27499998 -2.1319444 -.05694437 9 4 9 4 .12500003 .14583342 -.05694437 9 4.5 9 5 .12500003 .14583342 -.05694437 9 4 9 6 -.27499998 .3680556 -.05694437 9 4.5 9 7 .12500003 .25694454 -.05694437 9 4.5 9 8 -.07499997 .3680556 -.05694437 9 3.4 10 1 .2 0 .8430556 10 3.5 10 2 .2 0 .8430556 10 3.7 10 3 .2 0 .8430556 10 3 10 4 0 0 .8430556 10 3.3 10 5 .2 0 .8430556 10 3.6 10 6 -.8 0 .8430556 10 3 10 7 0 0 .8430556 10 3 10 8 0 0 .8430556 10 3.8 11 1 .8 0 .24305563 11 3.8 11 2 -.20000005 0 .24305563 11 3.4 11 3 -.20000005 0 .24305563 11 3.8 11 4 -.20000005 0 .24305563 11 3.6 11 5 -4.768372e-08 0 .24305563 11 4 11 6 -.20000005 0 .24305563 11 3.6 11 7 -4.768372e-08 0 .24305563 11 3.4 11 8 -4.768372e-08 0 .24305563 11 4.1 12 1 -.75 0 -.05694437 12 3.3 12 2 -.55 0 -.05694437 12 3.8 12 3 .25 0 -.05694437 12 3.9 12 4 -.75 0 -.05694437 12 3.9 12 5 -.35 0 -.05694437 12 3.6 12 6 .65 0 -.05694437 12 3 12 7 .25 0 -.05694437 12 4.3 12 8 1.25 0 -.05694437 12 3 13 1 0 -.009259198 -.6569444 13 3 13 2 0 -.009259198 -.6569444 13 3 13 3 0 -.064814754 -.6569444 13 3 13 4 0 -.009259198 -.6569444 13 end xtset id serial set seed 10000 capture program drop MoDMed program define MoDMed, rclass quietly summarize mod1 return list global m=r(mean) global sd=r(sd) mixed med l.iv mod1 cl.iv#c.mod1 || id: l.iv, var cov(exc) iter(50) return scalar al=(_b[med:L.iv]+_b[med:cL.iv#c.mod1]*($m-$sd)) return scalar ah=(_b[med:L.iv]+_b[med:cL.iv#c.mod1]*($m+$sd)) mixed dv med l.iv || id: l.iv med, var cov(exc) iter(50) return scalar b=(_b[dv:med]) end bootstrap indL=(r(al)*r(b)) indH=(r(ah)*r(b)) diff=(r(ah)*r(b)-r(al)*r(b)), reps(50) reject(e(converged)!=1) cluster(id) idcluster(newid) group(serial): MoDMed estat bootstrap program drop MoDMed
Related Posts with the smae code and the same data, but the result is different using STATA 13,15 and 16
npregress and Bandwidth selection with Bootstrap CIDear all, I have a question that is both technical (Stata) and theoretical. Based on the help file f…
How to do an analysis of transition frequencies in a placebo controlled study?Hi everyone, I want to do an analysis of transition frequencies in a placebo controlled sleep study…
unsuccessful mergeHello everyone! I am trying to merge two data files from different sources using the command merge …
Exporting/displaying boottest resultsHi everyone, I am running a difference in differences regression with Panel data on Stata version 1…
Expanding backwardsHello, Im working on a dataset and want to expand my dataset backwards for 2 months extra. The data…
Subscribe to:
Post Comments (Atom)
0 Response to the smae code and the same data, but the result is different using STATA 13,15 and 16
Post a Comment