Dear Statlisters,
I am analysing the data from an medical intervention in a pilot study with 29 individuals, randomized to either the intervention or a placebo. The outcome is a continuous variable, measured at 10 fixed timepoints (week 0, 1, 2,... after the intervention.
I am fitting a linear mixed model. My question is about how to consider the variable week in the interaction term.
As can be seen below, the number of repeated measurements generates a high number of estimates in the model when week is considered as a dummy variable and I am afraid that this approach may result in overfitting.
I will greatly appreciate your comments!
Thanks,
Sergio
xtmixed outcome c.week##arm || idnum:, covariance(independent) vce(robust)
Mixed-effects regression Number of obs = 361
Group variable: idnum Number of groups = 29
Obs per group:
min = 11
avg = 12.4
max = 13
Wald chi2(3) = 15.07
Log pseudolikelihood = -3014.5848 Prob > chi2 = 0.0018
(Std. Err. adjusted for 29 clusters in idnum)
------------------------------------------------------------------------------
| Robust
value_silva | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
week | -9.9303 4.179773 -2.38 0.018 -18.1225 -1.738095
|
arm |
Active | 502.3695 679.1563 0.74 0.459 -828.7524 1833.492
|
arm#c.week |
Active | 11.94946 6.549304 1.82 0.068 -.886942 24.78586
|
_cons | 1201.08 484.666 2.48 0.013 251.1525 2151.008
------------------------------------------------------------------------------
------------------------------------------------------------------------------
| Robust
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
idnum: Identity |
sd(_cons) | 1707.455 225.7852 1317.622 2212.625
-----------------------------+------------------------------------------------
sd(Residual) | 876.6354 156.7543 617.4654 1244.587
------------------------------------------------------------------------------
xtmixed outcome i.week##arm || idnum:, covariance(independent) vce(robust)
Mixed-effects regression Number of obs = 361
Group variable: idnum Number of groups = 29
Obs per group:
min = 11
avg = 12.4
max = 13
Wald chi2(25) = 124.89
Log pseudolikelihood = -3004.45 Prob > chi2 = 0.0000
(Std. Err. adjusted for 29 clusters in idnum)
------------------------------------------------------------------------------
| Robust
value_silva | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
week |
1 | -204.7705 125.2085 -1.64 0.102 -450.1747 40.63374
2 | -21.77049 156.2981 -0.14 0.889 -328.1091 284.5681
3 | -85.19371 122.2238 -0.70 0.486 -324.748 154.3606
4 | -119.5825 163.8736 -0.73 0.466 -440.7688 201.6039
5 | -1.628696 111.2908 -0.01 0.988 -219.7547 216.4973
6 | -60.57049 116.7885 -0.52 0.604 -289.4718 168.3308
7 | 332.8962 185.9883 1.79 0.073 -31.63423 697.4266
8 | 165.4295 202.5864 0.82 0.414 -231.6326 562.4916
12 | -228.4372 269.5621 -0.85 0.397 -756.7692 299.8949
24 | -262.621 358.5675 -0.73 0.464 -965.4004 440.1585
36 | -240.7705 94.83199 -2.54 0.011 -426.6378 -54.90321
48 | -545.0372 248.9063 -2.19 0.029 -1032.885 -57.1897
|
arm |
Active | 1117.039 850.5723 1.31 0.189 -550.0517 2784.13
|
week#arm |
1#Active | -768.0441 421.7324 -1.82 0.069 -1594.624 58.53621
2#Active | -942.6155 425.8868 -2.21 0.027 -1777.338 -107.8927
3#Active | -568.9066 329.6387 -1.73 0.084 -1214.987 77.17337
4#Active | -414.9682 329.9024 -1.26 0.208 -1061.565 231.6286
5#Active | -711.9809 382.4246 -1.86 0.063 -1461.519 37.55749
6#Active | -416.387 413.0244 -1.01 0.313 -1225.9 393.1259
7#Active | -796.9311 462.9949 -1.72 0.085 -1704.384 110.5223
8#Active | -705.8155 409.7805 -1.72 0.085 -1508.971 97.33948
12#Active | -374.8987 393.1176 -0.95 0.340 -1145.395 395.5977
24#Active | 16.37778 613.205 0.03 0.979 -1185.482 1218.238
36#Active | -298.3298 311.3191 -0.96 0.338 -908.5041 311.8445
48#Active | -80.51099 514.2789 -0.16 0.876 -1088.479 927.4572
|
_cons | 1177.704 495.5321 2.38 0.017 206.4788 2148.929
------------------------------------------------------------------------------
------------------------------------------------------------------------------
| Robust
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
idnum: Identity |
sd(_cons) | 1707.3 226.2045 1316.837 2213.542
-----------------------------+------------------------------------------------
sd(Residual) | 850.3314 144.6721 609.2115 1186.884
------------------------------------------------------------------------------
. testparm week##arm //P=0.0000
Related Posts with Mixed Models - considering time in the interaction term (timepoint##intervention) as continuous or dummy
Creating episodesDear All, I have an individual level panel data with 108 monthly waves. Code: Code: * Example …
Estimating a Dynamic Panel Threshold Model with the xthenreg commandDear Stata community, I'm using the Dynamic Panel Threshold methodology and get the following error…
Tabulate multiple variables with binary values into one table/supervariableHello everyone new here and to stata, so please forgive the numb question. I have a list of seven v…
Draw vertical line in coefplotHi guys, I’m running regressions using the reghdfe command, and I want to plot the coefficients. 20…
Substracting dates to get days-betweeni, I am trying to work with dates - specifically getting the mean interval in days between two date…
Subscribe to:
Post Comments (Atom)
0 Response to Mixed Models - considering time in the interaction term (timepoint##intervention) as continuous or dummy
Post a Comment