I want to calculate the marginal effects of my control variables. I use factor variables for categorical variables and for interactions, but I have different results when I use the factor variables compared to not using using the factor variables. I do not understand what am I doing wrong, please find attached the two different set of results.

Code:
. glm A c1r c1l c1c B C D E F G H I J K L M N O i.country, fa(b) link(logit) vce(robust)
note: vote1 has noninteger values

Iteration 0:   log pseudolikelihood =  -42.94693  
Iteration 1:   log pseudolikelihood =  -42.86314  
Iteration 2:   log pseudolikelihood = -42.862902  
Iteration 3:   log pseudolikelihood = -42.862902  

Generalized linear models                         No. of obs      =        109
Optimization     : ML                             Residual df     =         66
                                                  Scale parameter =          1
Deviance         =  2.554759242                   (1/df) Deviance =   .0387085
Pearson          =  2.449876389                   (1/df) Pearson  =   .0371193

Variance function: V(u) = u*(1-u/1)               [Binomial]
Link function    : g(u) = ln(u/(1-u))             [Logit]

                                                  AIC             =   1.575466
Log pseudolikelihood = -42.86290183               BIC             =  -307.0742

-------------------------------------------------------------------------------------
                    |               Robust
              A |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
                c1r |  -8.777873   6.446331    -1.36   0.173    -21.41245    3.856704
                c1l |  -5.230066   9.232645    -0.57   0.571    -23.32572    12.86559
                c1c |   14.04833   12.72731     1.10   0.270    -10.89674     38.9934
      B |   .5111221   1.002131     0.51   0.610    -1.453019    2.475264
          C |  -.2158331   .1219806    -1.77   0.077    -.4549108    .0232445
       D |  -1.015791   .6120185    -1.66   0.097    -2.215326    .1837427
       E |   -1.34568   .6942753    -1.94   0.053    -2.706434    .0150751
           F |   1.913601   1.263446     1.51   0.130    -.5627074    4.389909
           G |    3.03058   1.415898     2.14   0.032     .2554705     5.80569
           H |  -1.232532    .465843    -2.65   0.008    -2.145567   -.3194963
         I |   9.664852   5.081045     1.90   0.057    -.2938134    19.62352
         J |  -6.138072   5.524545    -1.11   0.267    -16.96598    4.689838
   K |   6.307305   2.485234     2.54   0.011     1.436336    11.17827
L |   .2637226   .1204656     2.19   0.029     .0276144    .4998309
   M |   .0157357   .0524758     0.30   0.764     -.087115    .1185864
N |   -5.59704   1.892737    -2.96   0.003    -9.306737   -1.887342
  O |   1.622794   1.562146     1.04   0.299    -1.438957    4.684544
                    |
            country |
                 2  |  -.3174748   .2825339    -1.12   0.261    -.8712311    .2362816
                 3  |   .9050205   .5325704     1.70   0.089    -.1387983    1.948839
                 5  |   .6366366   .3458818     1.84   0.066    -.0412793    1.314553
                 6  |  -.8061525   .3245252    -2.48   0.013     -1.44221   -.1700948
                 7  |   .9979821   .5256645     1.90   0.058    -.0323014    2.028266
                 8  |  -.3019033   .2208869    -1.37   0.172    -.7348336    .1310271
                 9  |   1.793135   1.120034     1.60   0.109    -.4020915    3.988362
                10  |   2.935015   1.670142     1.76   0.079    -.3384039    6.208433
                11  |   1.032755   .2682285     3.85   0.000     .5070367    1.558473
                12  |   .6142258   .4606796     1.33   0.182    -.2886895    1.517141
                13  |   .6579136   .2909312     2.26   0.024     .0876989    1.228128
                14  |   2.322749    1.06672     2.18   0.029      .232017    4.413481
                15  |   .3860536   .4793302     0.81   0.421    -.5534164    1.325524
                16  |   .3461292   .6025894     0.57   0.566    -.8349244    1.527183
                17  |  -.4832077   .7065197    -0.68   0.494    -1.867961    .9015454
                18  |   1.483425   .3839561     3.86   0.000     .7308851    2.235965
                19  |   .0972213   .3887099     0.25   0.803     -.664636    .8590787
                20  |   .8722559   .5144817     1.70   0.090    -.1361096    1.880621
                21  |    .846566   .3115486     2.72   0.007     .2359419     1.45719
                22  |   1.283534   .5730708     2.24   0.025     .1603358    2.406732
                23  |   1.252627    .498347     2.51   0.012     .2758851    2.229369
                24  |   .4272264   .3648452     1.17   0.242    -.2878572     1.14231
                25  |     2.1732   .8145399     2.67   0.008     .5767307    3.769668
                26  |  -.5704112   .3033152    -1.88   0.060    -1.164898    .0240757
                27  |   1.839924   1.113983     1.65   0.099    -.3434435    4.023291
                    |
              _cons |  -3.763331    1.28113    -2.94   0.003      -6.2743   -1.252362
-------------------------------------------------------------------------------------

.

Code:
 
 glm A c.c1#D c.c1#E c.c1#creelection1 B i.C i.D i.E c.averagegovtexp#D c.averagegovtexp#E c.a
> veragegovtexp#creelection1 c.I c.J c.K c.L c.M c.N c.O i.country, fa(b) link(logit) vce(robus
> t)

note: 1.E#c.c1 omitted because of collinearity
note: 1.creelection1#c.c1 omitted because of collinearity
note: 1.E#c.averagegovtexp omitted because of collinearity
note: 1.creelection1#c.averagegovtexp omitted because of collinearity
note: A has noninteger values

Iteration 0:   log pseudolikelihood = -42.941667  
Iteration 1:   log pseudolikelihood = -42.859938  
Iteration 2:   log pseudolikelihood =   -42.8597  
Iteration 3:   log pseudolikelihood =   -42.8597  

Generalized linear models                         No. of obs      =        109
Optimization     : ML                             Residual df     =         64
                                                  Scale parameter =          1
Deviance         =  2.548356364                   (1/df) Deviance =   .0398181
Pearson          =  2.444726741                   (1/df) Pearson  =   .0381989

Variance function: V(u) = u*(1-u/1)               [Binomial]
Link function    : g(u) = ln(u/(1-u))             [Logit]

                                                  AIC             =   1.612105
Log pseudolikelihood = -42.85970039               BIC             =  -297.6979

-------------------------------------------------------------------------------------
                    |               Robust
              A |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
  rreelection1#c.c1 |
                 0  |   8.470525   19.76285     0.43   0.668    -30.26394      47.205
                 1  |  -1.580529   23.87824    -0.07   0.947    -48.38102    45.21996
                    |
  lreelection1#c.c1 |
                 0  |   6.771615   12.02922     0.56   0.573    -16.80523    30.34846
                 1  |          0  (omitted)
                    |
  creelection1#c.c1 |
                 0  |  -13.67147   15.70461    -0.87   0.384    -44.45194    17.10901
                 1  |          0  (omitted)
                    |
      B |   .5041213   1.014915     0.50   0.619    -1.485075    2.493317
        1.C |  -.2165275   .1214293    -1.78   0.075    -.4545245    .0214696
     1.D |  -1.076306    .632389    -1.70   0.089    -2.315766    .1631532
     1.E |  -1.412453   .6621664    -2.13   0.033    -2.710276   -.1146312
                    |
       D#|
   c.averagegovtexp |
                 0  |   1.571097   2.247716     0.70   0.485    -2.834346     5.97654
                 1  |   3.604304   2.404048     1.50   0.134    -1.107542    8.316151
                    |
       E#|
   c.averagegovtexp |
                 0  |  -3.163227   1.347199    -2.35   0.019    -5.803689   -.5227646
                 1  |          0  (omitted)
                    |
       creelection1#|
   c.averagegovtexp |
                 0  |    1.20869    .519934     2.32   0.020     .1896384    2.227742
                 1  |          0  (omitted)
                    |
         I |   9.703945   4.878562     1.99   0.047     .1421387    19.26575
         J |  -6.184813   5.818585    -1.06   0.288    -17.58903    5.219403
   K |     6.0959   2.741294     2.22   0.026     .7230625    11.46874
L |   .2592149   .1332625     1.95   0.052    -.0019748    .5204045
   M |    .024784    .063311     0.39   0.695    -.0993032    .1488713
N |  -5.528738   1.958356    -2.82   0.005    -9.367046    -1.69043
  O |   1.596015   1.553947     1.03   0.304    -1.449666    4.641695
                    |
            country |
                 2  |  -.3206109   .2972785    -1.08   0.281     -.903266    .2620443
                 3  |   .7806132   .6643167     1.18   0.240    -.5214236     2.08265
                 5  |   .5959516   .4866569     1.22   0.221    -.3578784    1.549781
                 6  |  -.7933917   .3294559    -2.41   0.016    -1.439113   -.1476701
                 7  |   .9247078   .6654651     1.39   0.165    -.3795798    2.228995
                 8  |  -.3031683   .2269195    -1.34   0.182    -.7479223    .1415857
                 9  |   1.808557   1.184715     1.53   0.127    -.5134411    4.130555
                10  |   2.941216   1.806134     1.63   0.103    -.5987413    6.481174
                11  |   1.011056   .3283157     3.08   0.002     .3675687    1.654543
                12  |   .5916792   .5207664     1.14   0.256    -.4290042    1.612363
                13  |    .611112   .3838553     1.59   0.111    -.1412306    1.363454
                14  |   2.317612   1.153793     2.01   0.045     .0562189    4.579004
                15  |   .2948902   .6324098     0.47   0.641    -.9446103    1.534391
                16  |   .2832857   .7178377     0.39   0.693     -1.12365    1.690222
                17  |  -.4926725   .7168042    -0.69   0.492    -1.897583    .9122379
                18  |   1.447373   .4602922     3.14   0.002     .5452173    2.349529
                19  |   .0948476    .443375     0.21   0.831    -.7741515    .9638466
                20  |   .8335054   .5799551     1.44   0.151    -.3031856    1.970196
                21  |   .8195496   .3933186     2.08   0.037     .0486594     1.59044
                22  |   1.217881   .7061443     1.72   0.085    -.1661364    2.601898
                23  |   1.207571   .6129117     1.97   0.049     .0062862    2.408856
                24  |   .4207905   .4571189     0.92   0.357     -.475146    1.316727
                25  |   2.149276   .9624491     2.23   0.026     .2629099    4.035641
                26  |  -.5625191    .294506    -1.91   0.056     -1.13974     .014702
                27  |   1.804801   1.245022     1.45   0.147    -.6353973    4.244999
                    |
              _cons |  -3.550846   1.789157    -1.98   0.047     -7.05753   -.0441618
-------------------------------------------------------------------------------------

. 
end of do-file