Code:
. glm A c1r c1l c1c B C D E F G H I J K L M N O i.country, fa(b) link(logit) vce(robust) note: vote1 has noninteger values Iteration 0: log pseudolikelihood = -42.94693 Iteration 1: log pseudolikelihood = -42.86314 Iteration 2: log pseudolikelihood = -42.862902 Iteration 3: log pseudolikelihood = -42.862902 Generalized linear models No. of obs = 109 Optimization : ML Residual df = 66 Scale parameter = 1 Deviance = 2.554759242 (1/df) Deviance = .0387085 Pearson = 2.449876389 (1/df) Pearson = .0371193 Variance function: V(u) = u*(1-u/1) [Binomial] Link function : g(u) = ln(u/(1-u)) [Logit] AIC = 1.575466 Log pseudolikelihood = -42.86290183 BIC = -307.0742 ------------------------------------------------------------------------------------- | Robust A | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------------+---------------------------------------------------------------- c1r | -8.777873 6.446331 -1.36 0.173 -21.41245 3.856704 c1l | -5.230066 9.232645 -0.57 0.571 -23.32572 12.86559 c1c | 14.04833 12.72731 1.10 0.270 -10.89674 38.9934 B | .5111221 1.002131 0.51 0.610 -1.453019 2.475264 C | -.2158331 .1219806 -1.77 0.077 -.4549108 .0232445 D | -1.015791 .6120185 -1.66 0.097 -2.215326 .1837427 E | -1.34568 .6942753 -1.94 0.053 -2.706434 .0150751 F | 1.913601 1.263446 1.51 0.130 -.5627074 4.389909 G | 3.03058 1.415898 2.14 0.032 .2554705 5.80569 H | -1.232532 .465843 -2.65 0.008 -2.145567 -.3194963 I | 9.664852 5.081045 1.90 0.057 -.2938134 19.62352 J | -6.138072 5.524545 -1.11 0.267 -16.96598 4.689838 K | 6.307305 2.485234 2.54 0.011 1.436336 11.17827 L | .2637226 .1204656 2.19 0.029 .0276144 .4998309 M | .0157357 .0524758 0.30 0.764 -.087115 .1185864 N | -5.59704 1.892737 -2.96 0.003 -9.306737 -1.887342 O | 1.622794 1.562146 1.04 0.299 -1.438957 4.684544 | country | 2 | -.3174748 .2825339 -1.12 0.261 -.8712311 .2362816 3 | .9050205 .5325704 1.70 0.089 -.1387983 1.948839 5 | .6366366 .3458818 1.84 0.066 -.0412793 1.314553 6 | -.8061525 .3245252 -2.48 0.013 -1.44221 -.1700948 7 | .9979821 .5256645 1.90 0.058 -.0323014 2.028266 8 | -.3019033 .2208869 -1.37 0.172 -.7348336 .1310271 9 | 1.793135 1.120034 1.60 0.109 -.4020915 3.988362 10 | 2.935015 1.670142 1.76 0.079 -.3384039 6.208433 11 | 1.032755 .2682285 3.85 0.000 .5070367 1.558473 12 | .6142258 .4606796 1.33 0.182 -.2886895 1.517141 13 | .6579136 .2909312 2.26 0.024 .0876989 1.228128 14 | 2.322749 1.06672 2.18 0.029 .232017 4.413481 15 | .3860536 .4793302 0.81 0.421 -.5534164 1.325524 16 | .3461292 .6025894 0.57 0.566 -.8349244 1.527183 17 | -.4832077 .7065197 -0.68 0.494 -1.867961 .9015454 18 | 1.483425 .3839561 3.86 0.000 .7308851 2.235965 19 | .0972213 .3887099 0.25 0.803 -.664636 .8590787 20 | .8722559 .5144817 1.70 0.090 -.1361096 1.880621 21 | .846566 .3115486 2.72 0.007 .2359419 1.45719 22 | 1.283534 .5730708 2.24 0.025 .1603358 2.406732 23 | 1.252627 .498347 2.51 0.012 .2758851 2.229369 24 | .4272264 .3648452 1.17 0.242 -.2878572 1.14231 25 | 2.1732 .8145399 2.67 0.008 .5767307 3.769668 26 | -.5704112 .3033152 -1.88 0.060 -1.164898 .0240757 27 | 1.839924 1.113983 1.65 0.099 -.3434435 4.023291 | _cons | -3.763331 1.28113 -2.94 0.003 -6.2743 -1.252362 ------------------------------------------------------------------------------------- .
Code:
glm A c.c1#D c.c1#E c.c1#creelection1 B i.C i.D i.E c.averagegovtexp#D c.averagegovtexp#E c.a > veragegovtexp#creelection1 c.I c.J c.K c.L c.M c.N c.O i.country, fa(b) link(logit) vce(robus > t) note: 1.E#c.c1 omitted because of collinearity note: 1.creelection1#c.c1 omitted because of collinearity note: 1.E#c.averagegovtexp omitted because of collinearity note: 1.creelection1#c.averagegovtexp omitted because of collinearity note: A has noninteger values Iteration 0: log pseudolikelihood = -42.941667 Iteration 1: log pseudolikelihood = -42.859938 Iteration 2: log pseudolikelihood = -42.8597 Iteration 3: log pseudolikelihood = -42.8597 Generalized linear models No. of obs = 109 Optimization : ML Residual df = 64 Scale parameter = 1 Deviance = 2.548356364 (1/df) Deviance = .0398181 Pearson = 2.444726741 (1/df) Pearson = .0381989 Variance function: V(u) = u*(1-u/1) [Binomial] Link function : g(u) = ln(u/(1-u)) [Logit] AIC = 1.612105 Log pseudolikelihood = -42.85970039 BIC = -297.6979 ------------------------------------------------------------------------------------- | Robust A | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------------+---------------------------------------------------------------- rreelection1#c.c1 | 0 | 8.470525 19.76285 0.43 0.668 -30.26394 47.205 1 | -1.580529 23.87824 -0.07 0.947 -48.38102 45.21996 | lreelection1#c.c1 | 0 | 6.771615 12.02922 0.56 0.573 -16.80523 30.34846 1 | 0 (omitted) | creelection1#c.c1 | 0 | -13.67147 15.70461 -0.87 0.384 -44.45194 17.10901 1 | 0 (omitted) | B | .5041213 1.014915 0.50 0.619 -1.485075 2.493317 1.C | -.2165275 .1214293 -1.78 0.075 -.4545245 .0214696 1.D | -1.076306 .632389 -1.70 0.089 -2.315766 .1631532 1.E | -1.412453 .6621664 -2.13 0.033 -2.710276 -.1146312 | D#| c.averagegovtexp | 0 | 1.571097 2.247716 0.70 0.485 -2.834346 5.97654 1 | 3.604304 2.404048 1.50 0.134 -1.107542 8.316151 | E#| c.averagegovtexp | 0 | -3.163227 1.347199 -2.35 0.019 -5.803689 -.5227646 1 | 0 (omitted) | creelection1#| c.averagegovtexp | 0 | 1.20869 .519934 2.32 0.020 .1896384 2.227742 1 | 0 (omitted) | I | 9.703945 4.878562 1.99 0.047 .1421387 19.26575 J | -6.184813 5.818585 -1.06 0.288 -17.58903 5.219403 K | 6.0959 2.741294 2.22 0.026 .7230625 11.46874 L | .2592149 .1332625 1.95 0.052 -.0019748 .5204045 M | .024784 .063311 0.39 0.695 -.0993032 .1488713 N | -5.528738 1.958356 -2.82 0.005 -9.367046 -1.69043 O | 1.596015 1.553947 1.03 0.304 -1.449666 4.641695 | country | 2 | -.3206109 .2972785 -1.08 0.281 -.903266 .2620443 3 | .7806132 .6643167 1.18 0.240 -.5214236 2.08265 5 | .5959516 .4866569 1.22 0.221 -.3578784 1.549781 6 | -.7933917 .3294559 -2.41 0.016 -1.439113 -.1476701 7 | .9247078 .6654651 1.39 0.165 -.3795798 2.228995 8 | -.3031683 .2269195 -1.34 0.182 -.7479223 .1415857 9 | 1.808557 1.184715 1.53 0.127 -.5134411 4.130555 10 | 2.941216 1.806134 1.63 0.103 -.5987413 6.481174 11 | 1.011056 .3283157 3.08 0.002 .3675687 1.654543 12 | .5916792 .5207664 1.14 0.256 -.4290042 1.612363 13 | .611112 .3838553 1.59 0.111 -.1412306 1.363454 14 | 2.317612 1.153793 2.01 0.045 .0562189 4.579004 15 | .2948902 .6324098 0.47 0.641 -.9446103 1.534391 16 | .2832857 .7178377 0.39 0.693 -1.12365 1.690222 17 | -.4926725 .7168042 -0.69 0.492 -1.897583 .9122379 18 | 1.447373 .4602922 3.14 0.002 .5452173 2.349529 19 | .0948476 .443375 0.21 0.831 -.7741515 .9638466 20 | .8335054 .5799551 1.44 0.151 -.3031856 1.970196 21 | .8195496 .3933186 2.08 0.037 .0486594 1.59044 22 | 1.217881 .7061443 1.72 0.085 -.1661364 2.601898 23 | 1.207571 .6129117 1.97 0.049 .0062862 2.408856 24 | .4207905 .4571189 0.92 0.357 -.475146 1.316727 25 | 2.149276 .9624491 2.23 0.026 .2629099 4.035641 26 | -.5625191 .294506 -1.91 0.056 -1.13974 .014702 27 | 1.804801 1.245022 1.45 0.147 -.6353973 4.244999 | _cons | -3.550846 1.789157 -1.98 0.047 -7.05753 -.0441618 ------------------------------------------------------------------------------------- . end of do-file
0 Response to Marginal Effects with Factor Variables
Post a Comment