Dear all,

I am currently working on my master thesis : i am analyzing the link between board gender diversity and firm performance. My sample consists of 264 firms from the S&P500 over the 2006-2012 period.

I am using Stata/SE 15.1 and for the regression i am using reghdfe

my model is the following one :
firm value= B0 + B1[%WomenOnBoard] + B2[control variables] + Year fixed effects*Industry fixed effects + Firm fixed effects + e

My problem is when I want to see how the firms reacted during the subprime crisis and outside the crisis. Therefore, i added interaction terms and worked with dummy variables (Crisis and PostCrisis)
Crisis = 1 when year = 2008 & 2009, 0 otherwise and PostCrisis when year = 2010, 2011, 2012 and 0 otherwise.

firm value= B0 + B1[%women*Crisis] + B1[%women*Post_Crisis] + B3[control variables] + Year fixed effects * Industry Fixed effects + Firm fixed effects + e


Code:
. reghdfe Q c.WOMENONBOARD_w#i.Crisis c.WOMENONBOARD_w#i.PostCrisis BOARDSIZE_w FIRMSIZELNAT_w CASHHO
> LDINGSCHEAT_w LEVV_w, absorb(i.DataYearFiscal#SIC_group FIRM) vce(cluster FIRM)
(MWFE estimator converged in 2 iterations)
note: 1.PostCrisis#c.WOMENONBOARD_w omitted because of collinearity

HDFE Linear regression                            Number of obs   =      1,848
Absorbing 2 HDFE groups                           F(   7,    263) =      17.15
Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                  R-squared       =     0.8905
                                                  Adj R-squared   =     0.8701
                                                  Within R-sq.    =     0.2031
Number of clusters (FIRM)    =        264         Root MSE        =     0.1537

                                                (Std. Err. adjusted for 264 clusters in FIRM)
---------------------------------------------------------------------------------------------
                            |               Robust
                          Q |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
    Crisis#c.WOMENONBOARD_w |
                         0  |  -.1269574   .1403645    -0.90   0.367    -.4033387    .1494238
                         1  |  -.1456752   .2077467    -0.70   0.484    -.5547336    .2633831
                            |
PostCrisis#c.WOMENONBOARD_w |
                         0  |   .1364259   .1710807     0.80   0.426    -.2004364    .4732881
                         1  |          0  (omitted)
                            |
                BOARDSIZE_w |  -.0001824   .0042915    -0.04   0.966    -.0086325    .0082676
             FIRMSIZELNAT_w |  -.3358434   .0323371   -10.39   0.000    -.3995159   -.2721709
        CASHHOLDINGSCHEAT_w |   .2864215   .1309255     2.19   0.030     .0286258    .5442171
                     LEVV_w |   .0014819   .0013261     1.12   0.265    -.0011292    .0040929
                      _cons |   3.758162   .3072915    12.23   0.000     3.153097    4.363227
---------------------------------------------------------------------------------------------

Absorbed degrees of freedom:
--------------------------------------------------------------------+
                Absorbed FE | Categories  - Redundant  = Num. Coefs |
----------------------------+---------------------------------------|
   DataYearFiscal#SIC_group |        21           0          21     |
                       FIRM |       264         264           0    *|
--------------------------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation
The problem is that i get an omitted coefficient, how should i deal with it ?

Someone recommended me to do a difference in differences, so i wrote the following code :


Code:
. reghdfe Q c.WOMENONBOARD_w##i.Crisis  BOARDSIZE_w FIRMSIZELNAT_w CASHHOLDINGSCHEAT_w LEVV_w, absorb
> (i.DataYearFiscal#SIC_group FIRM) vce(cluster FIRM)
note: 1bn.Crisis is probably collinear with the fixed effects (all partialled-out values are close to
>  zero; tol = 1.0e-09)
(MWFE estimator converged in 2 iterations)
note: 1.Crisis omitted because of collinearity

HDFE Linear regression                            Number of obs   =      1,848
Absorbing 2 HDFE groups                           F(   6,    263) =      19.36
Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                  R-squared       =     0.8904
                                                  Adj R-squared   =     0.8700
                                                  Within R-sq.    =     0.2023
Number of clusters (FIRM)    =        264         Root MSE        =     0.1537

                                            (Std. Err. adjusted for 264 clusters in FIRM)
-----------------------------------------------------------------------------------------
                        |               Robust
                      Q |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------------+----------------------------------------------------------------
         WOMENONBOARD_w |  -.0734974   .1215175    -0.60   0.546    -.3127683    .1657736
               1.Crisis |          0  (omitted)
                        |
Crisis#c.WOMENONBOARD_w |
                     1  |   .0650714   .0907979     0.72   0.474    -.1137119    .2438547
                        |
            BOARDSIZE_w |   .0000317   .0043224     0.01   0.994    -.0084793    .0085427
         FIRMSIZELNAT_w |  -.3352275   .0325952   -10.28   0.000    -.3994084   -.2710467
    CASHHOLDINGSCHEAT_w |    .293405   .1303574     2.25   0.025     .0367281    .5500819
                 LEVV_w |   .0014913   .0013221     1.13   0.260     -.001112    .0040946
                  _cons |   3.748505   .3097566    12.10   0.000     3.138586    4.358423
-----------------------------------------------------------------------------------------

Absorbed degrees of freedom:
--------------------------------------------------------------------+
                Absorbed FE | Categories  - Redundant  = Num. Coefs |
----------------------------+---------------------------------------|
   DataYearFiscal#SIC_group |        21           0          21     |
                       FIRM |       264         264           0    *|
--------------------------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation
I also created another variable that divide WOMENONBOARD_w in quartile, as an independent variable for gender diversity (in order to see the impact of the top vs bottom quartile)

Code:
. reghdfe Q i.quart##i.Crisis  BOARDSIZE_w FIRMSIZELNAT_w CASHHOLDINGSCHEAT_w LEVV_w, absorb(i.DataYe
> arFiscal#SIC_group FIRM) vce(cluster FIRM)
note: 1bn.Crisis is probably collinear with the fixed effects (all partialled-out values are close to
>  zero; tol = 1.0e-09)
(MWFE estimator converged in 2 iterations)
note: 1.Crisis omitted because of collinearity

HDFE Linear regression                            Number of obs   =      1,848
Absorbing 2 HDFE groups                           F(  10,    263) =      13.52
Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                  R-squared       =     0.8909
                                                  Adj R-squared   =     0.8702
                                                  Within R-sq.    =     0.2054
Number of clusters (FIRM)    =        264         Root MSE        =     0.1536

                                        (Std. Err. adjusted for 264 clusters in FIRM)
-------------------------------------------------------------------------------------
                    |               Robust
                  Q |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
              quart |
                 2  |   .0034021    .021553     0.16   0.875    -.0390362    .0458405
                 3  |  -.0131702   .0222317    -0.59   0.554     -.056945    .0306046
                 4  |  -.0298918   .0262545    -1.14   0.256    -.0815876     .021804
                    |
           1.Crisis |          0  (omitted)
                    |
       quart#Crisis |
               2 1  |   .0278492   .0246207     1.13   0.259    -.0206295     .076328
               3 1  |   .0252918   .0217393     1.16   0.246    -.0175134     .068097
               4 1  |   .0058297   .0234859     0.25   0.804    -.0404146     .052074
                    |
        BOARDSIZE_w |  -.0005533   .0043108    -0.13   0.898    -.0090414    .0079347
     FIRMSIZELNAT_w |  -.3349989   .0320547   -10.45   0.000    -.3981154   -.2718824
CASHHOLDINGSCHEAT_w |    .284658   .1298826     2.19   0.029      .028916       .5404
             LEVV_w |   .0014533   .0013958     1.04   0.299     -.001295    .0042016
              _cons |   3.750724   .3039763    12.34   0.000     3.152187     4.34926
-------------------------------------------------------------------------------------

Absorbed degrees of freedom:
--------------------------------------------------------------------+
                Absorbed FE | Categories  - Redundant  = Num. Coefs |
----------------------------+---------------------------------------|
   DataYearFiscal#SIC_group |        21           0          21     |
                       FIRM |       264         264           0    *|
--------------------------------------------------------------------+
* = FE nested within cluster; treated as redundant for DoF computation


Is diff-and-diffs a better option, however there is still an omitted coefficient ? and i am not sure about how to interpret the results?



Thanks in advance for your precious help.
Stephan YAN