| Id | Status | Event | tstart | tstop | sus |
| 1 | 1 | 1 | 0 | 16377 | cocaine |
| 1 | 0 | 2 | 18019 | 18213 | alcohol |
| 2 | 0 | 1 | 0 | 18169 | alcohol |
| 3 | 1 | 1 | 0 | 16037 | cocaine paste |
| 3 | 1 | 2 | 16049 | 16129 | cocaine paste |
| 3 | 0 | 3 | 16212 | 16275 | cocaine paste |
| 4 | 0 | 1 | 0 | 16617 | cocaine |
| 5 | 1 | 1 | 0 | 16750 | marijuana |
| 5 | 0 | 2 | 17123 | 17525 | marijuana |
Code:
stset tstop, fail(status) exit(time .) id(id) enter(tstart) stpm2 sus, df(5) scale(hazard) predict su1, at(sus 1) hazard predict su2, at(sus 2) hazard predict su3, at(sus 3) hazard predict su4, at(sus 4) hazard predict su5, at(sus 5) hazard stphplot, by(sus) stcox i.sus stphtest, rank detail
Code:
stphtest, rank detail
Test of proportional-hazards assumption
Time: Rank(t)
----------------------------------------------------------------
| rho chi2 df Prob>chi2
------------+---------------------------------------------------
1b.sus | . . 1 .
2.sus | -0.05253 66.45 1 0.0000
3.sus | -0.08080 156.46 1 0.0000
4.sus | -0.04212 42.66 1 0.0000
5.sus | -0.10743 276.38 1 0.0000
------------+---------------------------------------------------
global test | 341.50 4 0.0000
----------------------------------------------------------------Code:
stcox sus, tvc(sus) strata(event)
Code:
Stratified Cox regr. -- Breslow method for ties
No. of subjects = 79,710 Number of obs = 103,775
No. of failures = 24,066
Time at risk = 1338295692
LR chi2(2) = 2273.74
Log likelihood = -239219.92 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
main |
sus | 3.071586 .211246 16.32 0.000 2.684244 3.514823
-------------+----------------------------------------------------------------
tvc |
sus | .9999414 4.21e-06 -13.90 0.000 .9999332 .9999497
------------------------------------------------------------------------------
Stratified by event
Note: Variables in tvc equation interacted with _t.i found solutions for td effects like
Code:
scurve_tvcThank you for your help
0 Response to Plot recurrent event survival model(PWP-TT) with Time-Dependent effects
Post a Comment