Is there anything obviously wrong with this approach, or anything you would do differently?
Note: I'm using Stata 15.
Code:
. proportion gender_n, vce(cluster person) over(year) citype(wilson) percent
Proportion estimation Number of obs = 15,134
F: gender_n = F
M: gender_n = M
U: gender_n = U
2007: year = 2007
2008: year = 2008
2009: year = 2009
2010: year = 2010
2011: year = 2011
2012: year = 2012
2013: year = 2013
(Std. Err. adjusted for 8,237 clusters in person)
--------------------------------------------------------------
| Robust Wilson
Over | Percent Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
F |
2007 | 59.85 1.17 57.55 62.12
2008 | 65.17 1.00 63.18 67.10
2009 | 69.34 0.81 67.73 70.90
2010 | 71.12 0.96 69.20 72.96
2011 | 67.63 1.04 65.57 69.62
2012 | 71.09 0.96 69.16 72.94
2013 | 66.56 1.32 63.93 69.09
-------------+------------------------------------------------
M |
2007 | 16.55 0.88 14.89 18.36
2008 | 19.97 0.84 18.38 21.67
2009 | 23.90 0.75 22.46 25.40
2010 | 20.63 0.86 19.00 22.36
2011 | 24.71 0.95 22.88 26.62
2012 | 22.14 0.89 20.46 23.93
2013 | 26.81 1.24 24.46 29.30
-------------+------------------------------------------------
U |
2007 | 23.59 1.01 21.67 25.62
2008 | 14.86 0.74 13.46 16.38
2009 | 6.76 0.44 5.95 7.68
2010 | 8.26 0.58 7.19 9.47
2011 | 7.67 0.59 6.59 8.90
2012 | 6.77 0.53 5.80 7.89
2013 | 6.63 0.69 5.39 8.12
--------------------------------------------------------------
0 Response to getting 95% CIs for multinomial variable, with clustering
Post a Comment