Hi all! I’m running multinomial logit models with gender as an outcome. Goal: look at gender over time for each category of position_department_n. Model has cluster standard errors to account for repeated observations within individuals.

When I include a year*position_department_n interaction, I get different predicted probabilities than if I choose a specific position_department_n and look at the trend over time. For example, first approach - 1#1#Senior, Social Sci - gives .6817881. The second approach when I only keep records of "Senior, Social Sci" and run a model with year as independent, I get _predict#_at |1 1 = .6639009.

Question: which of the two ways is the most accurate? The second one (no interaction) is easier to interpret, but not sure if that's a good enough justification to use it if the first approach is more accurate. any help is much appreciated!


More info on Data structure: There are no duplicate records across person, year, position_department_n, and gender_n. However, the same person can show up multiple times in the same year corresponding to different values of position_department_n, and same person can show up in several years. Data sample:
person year position_department_n gender_n
1 2010 Senior, Art M
1 2011 Senior, Art M
1 2012 Senior, Art M
1 2012 Principal, Social Sci M
1 2013 Principal, Social Sci M
1 2013 Senior, Social Sci M



Results below:

First, I run the model with the interaction of year and position_department_n as the only explanatory variables (including the main effects led to some of the predicted probabilities not estimating):


Code:
. mlogit gender_n c.year#i.position_department_n, rrr vce(cluster person)

Iteration 0:   log pseudolikelihood = -25756.382  
Iteration 1:   log pseudolikelihood = -25585.173  
Iteration 2:   log pseudolikelihood = -25583.289  
Iteration 3:   log pseudolikelihood = -25583.288  

Multinomial logistic regression                 Number of obs     =     31,306
                                                Wald chi2(12)     =     252.02
                                                Prob > chi2       =     0.0000
Log pseudolikelihood = -25583.288               Pseudo R2         =     0.0067

                                            (Std. Err. adjusted for 10,425 clusters in person)
----------------------------------------------------------------------------------------------
                             |               Robust
                    gender_n |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------------+----------------------------------------------------------------
F                            |  (base outcome)
-----------------------------+----------------------------------------------------------------
M                            |
position_department_n#c.year |
             Principal, Art  |   1.053355   .0092655     5.91   0.000     1.035351    1.071673
              Principal, HR  |   1.053391   .0092637     5.91   0.000      1.03539    1.071705
      Principal, Social Sci  |   1.053518   .0092623     5.93   0.000      1.03552    1.071829
                Senior, Art  |   1.053325   .0092646     5.91   0.000     1.035322    1.071641
                 Senior, HR  |   1.053309   .0092623     5.91   0.000      1.03531     1.07162
         Senior, Social Sci  |   1.053433   .0092615     5.92   0.000     1.035436    1.071742
                             |
                       _cons |   1.19e-46   2.10e-45    -5.98   0.000     1.06e-61    1.33e-31
-----------------------------+----------------------------------------------------------------
U                            |
position_department_n#c.year |
             Principal, Art  |   .8998399   .0109779    -8.65   0.000     .8785788    .9216156
              Principal, HR  |   .8999677   .0109865    -8.63   0.000     .8786901    .9217605
      Principal, Social Sci  |   .8998911   .0109781    -8.65   0.000     .8786297    .9216671
                Senior, Art  |   .8996119   .0109747    -8.67   0.000      .878357    .9213811
                 Senior, HR  |   .8998544   .0109813    -8.65   0.000     .8785867    .9216369
         Senior, Social Sci  |   .8997857   .0109742    -8.66   0.000     .8785317    .9215539
                             |
                       _cons |   2.12e+91   5.19e+92     8.58   0.000     2.90e+70    1.5e+112
----------------------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

. margins i.position_department_n, at(year=(2008(1)2013))

Adjusted predictions                            Number of obs     =     31,306
Model VCE    : Robust

1._predict   : Pr(gender_n==F), predict(pr outcome(1))
2._predict   : Pr(gender_n==M), predict(pr outcome(2))
3._predict   : Pr(gender_n==U), predict(pr outcome(3))

1._at        : year            =        2008

2._at        : year            =        2009

3._at        : year            =        2010

4._at        : year            =        2011

5._at        : year            =        2012

6._at        : year            =        2013

----------------------------------------------------------------------------------------------------
                                   |            Delta-method
                                   |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------------------+----------------------------------------------------------------
_predict#_at#position_department_n |
               1#1#Principal, Art  |   .6904148   .0146884    47.00   0.000     .6616262    .7192034
                1#1#Principal, HR  |   .6534034   .0179981    36.30   0.000     .6181278     .688679
        1#1#Principal, Social Sci  |   .6393116   .0117618    54.35   0.000     .6162589    .6623644
                  1#1#Senior, Art  |   .7371994   .0104295    70.68   0.000     .7167579    .7576409
                   1#1#Senior, HR  |   .6977463   .0130652    53.41   0.000     .6721391    .7233536
           1#1#Senior, Social Sci  |   .6817881   .0087808    77.65   0.000      .664578    .6989982
               1#2#Principal, Art  |   .6932711   .0142585    48.62   0.000     .6653249    .7212173
                1#2#Principal, HR  |   .6583121   .0176441    37.31   0.000     .6237302     .692894
        1#2#Principal, Social Sci  |   .6406808   .0112269    57.07   0.000     .6186766    .6626851
                  1#2#Senior, Art  |   .7366476   .0101531    72.55   0.000     .7167479    .7565474
                   1#2#Senior, HR  |   .7015478   .0126924    55.27   0.000     .6766712    .7264244
           1#2#Senior, Social Sci  |   .6825181   .0081336    83.91   0.000     .6665765    .6984596
               1#3#Principal, Art  |   .6948569   .0141003    49.28   0.000     .6672208    .7224929
                1#3#Principal, HR  |   .6618178   .0175169    37.78   0.000     .6274853    .6961503
        1#3#Principal, Social Sci  |   .6407483   .0109669    58.43   0.000     .6192537     .662243
                  1#3#Senior, Art  |   .7350899   .0101333    72.54   0.000      .715229    .7549508
                   1#3#Senior, HR  |   .7040617   .0125678    56.02   0.000     .6794293    .7286941
           1#3#Senior, Social Sci  |   .6820508    .007796    87.49   0.000      .666771    .6973305
               1#4#Principal, Art  |   .6952305   .0142038    48.95   0.000     .6673914    .7230695
                1#4#Principal, HR  |   .6639706   .0176048    37.72   0.000     .6294659    .6984753
        1#4#Principal, Social Sci  |   .6395812    .010991    58.19   0.000     .6180393     .661123
                  1#4#Senior, Art  |   .7325831   .0103738    70.62   0.000     .7122508    .7529154
                   1#4#Senior, HR  |    .705343    .012678    55.64   0.000     .6804944    .7301915
           1#4#Senior, Social Sci  |   .6804506   .0077986    87.25   0.000     .6651656    .6957357
               1#5#Principal, Art  |   .6944533   .0145583    47.70   0.000     .6659195    .7229871
                1#5#Principal, HR  |   .6648276    .017899    37.14   0.000     .6297463     .699909
        1#5#Principal, Social Sci  |   .6372502   .0113034    56.38   0.000      .615096    .6594044
                  1#5#Senior, Art  |    .729183   .0108715    67.07   0.000     .7078752    .7504908
                   1#5#Senior, HR  |     .70545   .0130121    54.21   0.000     .6799468    .7309533
           1#5#Senior, Social Sci  |   .6777837   .0081535    83.13   0.000     .6618031    .6937643
               1#6#Principal, Art  |   .6925886   .0151514    45.71   0.000     .6628924    .7222847
                1#6#Principal, HR  |   .6644512    .018393    36.13   0.000     .6284016    .7005009
        1#6#Principal, Social Sci  |   .6338283    .011899    53.27   0.000     .6105066    .6571499
                  1#6#Senior, Art  |   .7249436   .0116154    62.41   0.000     .7021779    .7477094
                   1#6#Senior, HR  |   .7044437   .0135605    51.95   0.000     .6778655    .7310219
           1#6#Senior, Social Sci  |   .6741162   .0088449    76.22   0.000     .6567806    .6914518
               2#1#Principal, Art  |    .175149   .0110554    15.84   0.000     .1534807    .1968173
                2#1#Principal, HR  |   .1773813   .0134333    13.20   0.000     .1510524    .2037101
        2#1#Principal, Social Sci  |   .2211269   .0099466    22.23   0.000      .201632    .2406218
                  2#1#Senior, Art  |   .1765052   .0088592    19.92   0.000     .1591415    .1938688
                   2#1#Senior, HR  |   .1619424   .0100195    16.16   0.000     .1423046    .1815802
           2#1#Senior, Social Sci  |   .2005883   .0075333    26.63   0.000     .1858233    .2153533
               2#2#Principal, Art  |   .1852574   .0113472    16.33   0.000     .1630174    .2074974
                2#2#Principal, HR  |   .1882555   .0138436    13.60   0.000     .1611226    .2153884
        2#2#Principal, Social Sci  |   .2334601   .0097708    23.89   0.000     .2143097    .2526105
                  2#2#Senior, Art  |   .1857781   .0089387    20.78   0.000     .1682587    .2032976
                   2#2#Senior, HR  |   .1715046   .0102093    16.80   0.000     .1514947    .1915145
           2#2#Senior, Social Sci  |   .2115326   .0071727    29.49   0.000     .1974743    .2255908
               2#3#Principal, Art  |   .1955882   .0117739    16.61   0.000     .1725117    .2186646
                2#3#Principal, HR  |   .1993627   .0143567    13.89   0.000      .171224    .2275013
        2#3#Principal, Social Sci  |   .2459803   .0097742    25.17   0.000     .2268231    .2651374
                  2#3#Senior, Art  |   .1952709   .0091886    21.25   0.000     .1772616    .2132802
                   2#3#Senior, HR  |   .1812946   .0105209    17.23   0.000     .1606741    .2019152
           2#3#Senior, Social Sci  |   .2226828   .0070125    31.76   0.000     .2089385    .2364271
               2#4#Principal, Art  |   .2061346    .012355    16.68   0.000     .1819193    .2303499
                2#4#Principal, HR  |   .2106899   .0149893    14.06   0.000     .1813114    .2400684
        2#4#Principal, Social Sci  |   .2586726   .0100062    25.85   0.000     .2390607    .2782845
                  2#4#Senior, Art  |   .2049823    .009637    21.27   0.000     .1860941    .2238705
                   2#4#Senior, HR  |   .1913067   .0109782    17.43   0.000     .1697899    .2128235
           2#4#Senior, Social Sci  |   .2340311   .0071308    32.82   0.000     .2200549    .2480073
               2#5#Principal, Art  |   .2168903   .0131032    16.55   0.000     .1912084    .2425721
                2#5#Principal, HR  |   .2222253   .0157547    14.11   0.000     .1913467    .2531038
        2#5#Principal, Social Sci  |    .271523   .0104999    25.86   0.000     .2509436    .2921024
                  2#5#Senior, Art  |   .2149108   .0102991    20.87   0.000     .1947249    .2350967
                   2#5#Senior, HR  |   .2015356   .0115993    17.37   0.000     .1788014    .2242698
           2#5#Senior, Social Sci  |   .2455698   .0075781    32.41   0.000     .2307169    .2604226
               2#6#Principal, Art  |    .227849   .0140246    16.25   0.000     .2003614    .2553367
                2#6#Principal, HR  |   .2339575   .0166618    14.04   0.000      .201301    .2666141
        2#6#Principal, Social Sci  |   .2845183   .0112657    25.26   0.000      .262438    .3065986
                  2#6#Senior, Art  |   .2250549   .0111768    20.14   0.000     .2031488    .2469609
                   2#6#Senior, HR  |   .2119763    .012395    17.10   0.000     .1876825    .2362701
           2#6#Senior, Social Sci  |   .2572915   .0083605    30.77   0.000     .2409053    .2736778
               3#1#Principal, Art  |   .1344362   .0120228    11.18   0.000     .1108719    .1580005
                3#1#Principal, HR  |   .1692153   .0153947    10.99   0.000     .1390423    .1993883
        3#1#Principal, Social Sci  |   .1395614   .0090152    15.48   0.000     .1218919     .157231
                  3#1#Senior, Art  |   .0862954   .0068023    12.69   0.000     .0729632    .0996276
                   3#1#Senior, HR  |   .1403113   .0105034    13.36   0.000      .119725    .1608975
           3#1#Senior, Social Sci  |   .1176236   .0061717    19.06   0.000     .1055273    .1297199
               3#2#Principal, Art  |   .1214715    .010956    11.09   0.000     .0999982    .1429449
                3#2#Principal, HR  |   .1534324   .0143656    10.68   0.000     .1252763    .1815885
        3#2#Principal, Social Sci  |   .1258591   .0081374    15.47   0.000       .10991    .1418081
                  3#2#Senior, Art  |   .0775743   .0061057    12.71   0.000     .0656073    .0895412
                   3#2#Senior, HR  |   .1269476   .0096766    13.12   0.000     .1079819    .1459133
           3#2#Senior, Social Sci  |   .1059494    .005386    19.67   0.000      .095393    .1165058
               3#3#Principal, Art  |   .1095549   .0100884    10.86   0.000      .089782    .1293279
                3#3#Principal, HR  |   .1388195   .0135051    10.28   0.000       .11235    .1652891
        3#3#Principal, Social Sci  |   .1132714   .0075119    15.08   0.000     .0985484    .1279944
                  3#3#Senior, Art  |   .0696392   .0055765    12.49   0.000     .0587094     .080569
                   3#3#Senior, HR  |   .1146437   .0090519    12.67   0.000     .0969023    .1323851
           3#3#Senior, Social Sci  |   .0952664   .0048896    19.48   0.000      .085683    .1048499
               3#4#Principal, Art  |   .0986349   .0093833    10.51   0.000      .080244    .1170259
                3#4#Principal, HR  |   .1253395    .012776     9.81   0.000      .100299    .1503799
        3#4#Principal, Social Sci  |   .1017463   .0070819    14.37   0.000      .087866    .1156265
                  3#4#Senior, Art  |   .0624346   .0051781    12.06   0.000     .0522856    .0725835
                   3#4#Senior, HR  |   .1033504   .0085803    12.05   0.000     .0865332    .1201675
           3#4#Senior, Social Sci  |   .0855183   .0046211    18.51   0.000      .076461    .0945755
               3#5#Principal, Art  |   .0886564   .0088039    10.07   0.000      .071401    .1059118
                3#5#Principal, HR  |   .1129471   .0121433     9.30   0.000     .0891467    .1367476
        3#5#Principal, Social Sci  |   .0912269   .0067881    13.44   0.000     .0779225    .1045312
                  3#5#Senior, Art  |   .0559062   .0048751    11.47   0.000     .0463513    .0654611
                   3#5#Senior, HR  |   .0930144    .008215    11.32   0.000     .0769133    .1091155
           3#5#Senior, Social Sci  |   .0766465   .0045056    17.01   0.000     .0678158    .0854773
               3#6#Principal, Art  |   .0795624   .0083167     9.57   0.000     .0632619    .0958629
                3#6#Principal, HR  |   .1015912    .011577     8.78   0.000     .0789007    .1242817
        3#6#Principal, Social Sci  |   .0816534    .006577    12.41   0.000     .0687627    .0945441
                  3#6#Senior, Art  |   .0500015   .0046363    10.78   0.000     .0409146    .0590884
                   3#6#Senior, HR  |     .08358   .0079158    10.56   0.000     .0680653    .0990947
           3#6#Senior, Social Sci  |   .0685923   .0044734    15.33   0.000     .0598246      .07736
----------------------------------------------------------------------------------------------------



.

Then, I choose one specific posittion_department_n = “Senior, Social Sci” and run a model with just year.


Code:
.
. preserve

. keep if position_department_n==6
(20,148 observations deleted)

. mlogit gender_n year, rrr vce(cluster person)

Iteration 0:   log pseudolikelihood = -9145.8643  
Iteration 1:   log pseudolikelihood = -9104.1549  
Iteration 2:   log pseudolikelihood = -9103.6146  
Iteration 3:   log pseudolikelihood = -9103.6145  

Multinomial logistic regression                 Number of obs     =     11,158
                                                Wald chi2(2)      =      83.93
                                                Prob > chi2       =     0.0000
Log pseudolikelihood = -9103.6145               Pseudo R2         =     0.0046

                             (Std. Err. adjusted for 5,403 clusters in person)
------------------------------------------------------------------------------
             |               Robust
    gender_n |        RRR   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
F            |  (base outcome)
-------------+----------------------------------------------------------------
M            |
        year |   1.034325   .0131964     2.65   0.008     1.008781    1.060515
       _cons |   1.14e-30   2.92e-29    -2.69   0.007     1.67e-52    7.79e-09
-------------+----------------------------------------------------------------
U            |
        year |   .8388152    .017835    -8.27   0.000     .8045775    .8745098
       _cons |   3.8e+152   1.6e+154     8.22   0.000     1.6e+116    8.7e+188
------------------------------------------------------------------------------
Note: _cons estimates baseline relative risk for each outcome.

. margins, at(year = (2008(1)2013)) post

Adjusted predictions                            Number of obs     =     11,158
Model VCE    : Robust

1._predict   : Pr(gender_n==F), predict(pr outcome(1))
2._predict   : Pr(gender_n==M), predict(pr outcome(2))
3._predict   : Pr(gender_n==U), predict(pr outcome(3))

1._at        : year            =        2008

2._at        : year            =        2009

3._at        : year            =        2010

4._at        : year            =        2011

5._at        : year            =        2012

6._at        : year            =        2013

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
_predict#_at |
        1 1  |   .6639009   .0097464    68.12   0.000     .6447982    .6830035
        1 2  |   .6735234   .0084356    79.84   0.000     .6569898    .6900569
        1 3  |   .6808553   .0078396    86.85   0.000       .66549    .6962206
        1 4  |   .6861241   .0079737    86.05   0.000     .6704959    .7017522
        1 5  |   .6895562   .0087716    78.61   0.000     .6723643    .7067482
        1 6  |   .6913693   .0101041    68.42   0.000     .6715656    .7111731
        2 1  |   .2040169   .0083203    24.52   0.000     .1877094    .2203245
        2 2  |   .2140783    .007479    28.62   0.000     .1994196    .2287369
        2 3  |   .2238369   .0070453    31.77   0.000     .2100284    .2376454
        2 4  |   .2333116   .0072142    32.34   0.000     .2191722    .2474511
        2 5  |   .2425272   .0080547    30.11   0.000     .2267402    .2583142
        2 6  |   .2515114   .0094775    26.54   0.000     .2329359    .2700869
        3 1  |   .1320822   .0070437    18.75   0.000     .1182767    .1458877
        3 2  |   .1123984   .0055449    20.27   0.000     .1015306    .1232662
        3 3  |   .0953078   .0049427    19.28   0.000     .0856204    .1049953
        3 4  |   .0805643   .0048944    16.46   0.000     .0709715    .0901571
        3 5  |   .0679166    .005036    13.49   0.000     .0580463     .077787
        3 6  |   .0571193   .0051586    11.07   0.000     .0470087    .0672299
------------------------------------------------------------------------------