Hi experts and researchers,
I am working on a Panel data model using system GMM, xtabond2 command.
I use the interaction terms between Financial development and inflation (fdxihs_inf), Financial development squared and inflation (fdxsqrihs_inf)
Here are the results, I am wondering if it's normal getting high coefficients values of the interaction terms Financial development and inflation (64.64) and Financial development squared and inflation (-64.30876) although they have significant p-values, also AR(2)and Hansen tests values are good!
Commands:
. reg rgdpg ihs_inigdppc fdx ihs_inf ihs_gov ihs_gfcf ihs_trd ihs_lbor
Source | SS df MS Number of obs = 344
-------------+---------------------------------- F(7, 336) = 21.41
Model | 842.761954 7 120.394565 Prob > F = 0.0000
Residual | 1889.01653 336 5.62207301 R-squared = 0.3085
-------------+---------------------------------- Adj R-squared = 0.2941
Total | 2731.77848 343 7.96436876 Root MSE = 2.3711
------------------------------------------------------------------------------
rgdpg | Coefficient Std. err. t P>|t| [95% conf. interval]
-------------+----------------------------------------------------------------
ihs_inigdppc | -.5050419 .2287499 -2.21 0.028 -.9550044 -.0550795
fdx | -2.570679 1.031912 -2.49 0.013 -4.600501 -.5408573
ihs_inf | -.2163242 .1283409 -1.69 0.093 -.4687771 .0361286
ihs_gov | -1.052389 .6752113 -1.56 0.120 -2.380563 .2757845
ihs_gfcf | 4.525075 .6973592 6.49 0.000 3.153335 5.896815
ihs_trd | .6255223 .2538116 2.46 0.014 .1262623 1.124782
ihs_lbor | 1.649964 1.507447 1.09 0.275 -1.315258 4.615187
_cons | -14.97247 8.128953 -1.84 0.066 -30.96252 1.017586
------------------------------------------------------------------------------
. estat vif
Variable | VIF 1/VIF
-------------+----------------------
ihs_inigdppc | 3.27 0.306053
fdx | 2.70 0.369795
ihs_gov | 1.55 0.644058
ihs_inf | 1.46 0.683864
ihs_trd | 1.37 0.729436
ihs_gfcf | 1.26 0.795661
ihs_lbor | 1.16 0.865620
-------------+----------------------
Mean VIF | 1.82
xtabond2 rgdpg ihs_inigdppc_lag1 fdx fdxsqr ihs_inf fdxihs_inf fdxsqrihs_inf ihs_gfcf ihs_gov ihs_trd ihs_lbor y*, gmm (ihs_inigdppc_lag2 fdx_lag1 ihs_inf_lag1 , collapse) iv(fdx_lag2 ihs_inf_lag2 ihs_gfcf ihs_gov ihs_trd ihs_lbor y*, equation(level)) twostep robust small
Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
year dropped due to collinearity
yr_1 dropped due to collinearity
yr_3 dropped due to collinearity
yr_8 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: id Number of obs = 258
Time variable : year Number of groups = 43
Number of instruments = 31 Obs per group: min = 6
F(15, 42) = 26.77 avg = 6.00
Prob > F = 0.000 max = 6
-----------------------------------------------------------------------------------
| Corrected
rgdpg | Coefficient std. err. t P>|t| [95% conf. interval]
------------------+----------------------------------------------------------------
ihs_inigdppc_lag1 | 4.268642 3.15253 1.35 0.183 -2.093422 10.63071
fdx | -149.1703 57.26215 -2.61 0.013 -264.73 -33.61061
fdxsqr | 124.0305 45.2724 2.74 0.009 32.66707 215.3939
ihs_inf | -14.47922 4.504356 -3.21 0.003 -23.56938 -5.38906
fdxihs_inf | 64.64833 17.76636 3.64 0.001 28.79437 100.5023
fdxsqrihs_inf | -64.30876 16.47319 -3.90 0.000 -97.55301 -31.06452
ihs_gfcf | 6.826989 4.106349 1.66 0.104 -1.459958 15.11394
ihs_gov | -5.932954 3.309612 -1.79 0.080 -12.61202 .7461137
ihs_trd | -.6892453 1.663613 -0.41 0.681 -4.046551 2.668061
ihs_lbor | -2.684804 6.807573 -0.39 0.695 -16.42304 11.05343
year3 | .0234427 .0583441 0.40 0.690 -.0943004 .1411858
yr_2 | .401837 .5988671 0.67 0.506 -.8067257 1.6104
yr_4 | 1.507502 .5133429 2.94 0.005 .4715338 2.54347
yr_5 | -2.611209 .8814609 -2.96 0.005 -4.390069 -.8323486
yr_6 | -.5894495 .6881631 -0.86 0.397 -1.978219 .7993199
yr_7 | -.5367535 .898236 -0.60 0.553 -2.349467 1.27596
_cons | -35.58086 122.4317 -0.29 0.773 -282.658 211.4963
-----------------------------------------------------------------------------------
Instruments for first differences equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(1/7).(ihs_inigdppc_lag2 fdx_lag1 ihs_inf_lag1) collapsed
Instruments for levels equation
Standard
fdx_lag2 ihs_inf_lag2 ihs_gfcf ihs_gov ihs_trd ihs_lbor year3 year yr_1
yr_2 yr_3 yr_4 yr_5 yr_6 yr_7 yr_8
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
D.(ihs_inigdppc_lag2 fdx_lag1 ihs_inf_lag1) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -2.85 Pr > z = 0.004
Arellano-Bond test for AR(2) in first differences: z = 0.54 Pr > z = 0.587
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(14) = 27.46 Prob > chi2 = 0.017
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(14) = 19.04 Prob > chi2 = 0.163
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(12) = 15.65 Prob > chi2 = 0.208
Difference (null H = exogenous): chi2(2) = 3.39 Prob > chi2 = 0.184
iv(fdx_lag2 ihs_inf_lag2 ihs_gfcf ihs_gov ihs_trd ihs_lbor year3 year yr_1 yr_2 yr_3 yr_4 yr_5 yr_6 yr_7 yr_8, eq(level))
Hansen test excluding group: chi2(2) = 2.64 Prob > chi2 = 0.267
Difference (null H = exogenous): chi2(12) = 16.40 Prob > chi2 = 0.174
1- how can I make the values of the coefficients less than 1, please?
2- After system GMM I want to measure the marginal effect of the variable FDX on GDP ( continuous variables) and represent it on a graph with STATA, what is the command please?
I would be very grateful for any help
Regards
Badiah
Related Posts with High coefficients values of the interaction terms
Reshape data from long to wide format using the rolling windowsDear all, I am desperately looking for your help. I am trying to reshape my data from long to wide …
Moving cumulative sum over 10-year periodDear Statalist Community, I am currently struggling with a data transformation task and was wonderi…
Ologit, Paralell Regression Assumption and weightsHi, it's the first time i write here, hope the question is not too emantary, I'm trying to replicat…
Regression for state-wide daily data with fixed population percentage within statesHello, So I have data set up as such (sample data that I just made up): Code: * Example generated b…
Moving cumulative sum over 10-year periodDear Statalist Community, I am currently struggling with a data transformation task and was wonderi…
Subscribe to:
Post Comments (Atom)
0 Response to High coefficients values of the interaction terms
Post a Comment