1.- The endogenous variable varies between 0 and 1: f_n_p1p2p3_corrupcion
2.- There is a data panel: 17 cross sections and 10 time series
3.- There are 26 exogenous variables
4.- The Wald Insigma test concludes that we cannot accept the homoscedastic model
5.- In the fracreg probit I have included all the exogenous variables in the heteroscedasticity equation
6.- What model would you choose?
7.- Fracglm estimation:
. fracglm f_n_p1p2p3_corrupcion $xlist_nivel_base, link(p)
Fractional Probit Regression Number of obs = 2,007
Wald chi2(24) = .
Prob > chi2 = .
Log pseudolikelihood = -886.57796 Pseudo R2 = 0.1947
---------------------------------------------------------------------------------------------
| Robust
f_n_p1p2p3_corrupcion | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
paro | .0447631 .0030547 14.65 0.000 .0387759 .0507503
educ | -4.242257 .6703192 -6.33 0.000 -5.556058 -2.928456
internet | .0386991 .0013827 27.99 0.000 .0359892 .0414091
pibpc | .0257263 .0067201 3.83 0.000 .0125552 .0388975
ciclo | -.0030377 .0007722 -3.93 0.000 -.0045512 -.0015243
provincias | .0081609 .0072343 1.13 0.259 -.0060181 .0223398
habitantes | 1.44e-07 3.69e-08 3.89 0.000 7.13e-08 2.16e-07
denspob | 6.57e-07 .0001983 0.00 0.997 -.0003881 .0003894
pobdep | 12.64284 1.672184 7.56 0.000 9.365421 15.92026
pobinm | -2.607802 .5587866 -4.67 0.000 -3.703004 -1.512601
ubisigpol | .0460005 .0345048 1.33 0.182 -.0216276 .1136286
d_ideo_cuadra_votante_gob_3 | -.046812 .0105974 -4.42 0.000 -.0675825 -.0260415
mayabs_numero | .0910656 .0349888 2.60 0.009 .0224888 .1596424
indfp | -1.353811 .1811062 -7.48 0.000 -1.708773 -.9988495
aligob_numero | .0490593 .0235465 2.08 0.037 .002909 .0952097
partelec | -.0040318 .0019283 -2.09 0.037 -.0078112 -.0002524
legcons | .0351732 .0078346 4.49 0.000 .0198176 .0505288
gp | -6.82e-08 1.23e-08 -5.55 0.000 -9.24e-08 -4.41e-08
saldopre | -8.06e-08 1.09e-08 -7.39 0.000 -1.02e-07 -5.92e-08
deuda | 1.60e-08 2.24e-09 7.13 0.000 1.16e-08 2.04e-08
gi | -1.50e-07 3.07e-08 -4.88 0.000 -2.10e-07 -8.96e-08
gc | -4.40e-08 1.73e-08 -2.54 0.011 -7.79e-08 -1.01e-08
presfisc | -.0044704 .0297088 -0.15 0.880 -.0626986 .0537577
autfin | -.8489541 .1637078 -5.19 0.000 -1.169816 -.5280927
remanente | 5.41e-11 1.46e-11 3.71 0.000 2.55e-11 8.26e-11
_cons | -4.449184 .50938 -8.73 0.000 -5.44755 -3.450817
---------------------------------------------------------------------------------------------
8.- Fracreg probit estimate:
fracreg probit f_n_p1p2p3_corrupcion $xlist_nivel_base, het($xlist_nivel_base)
Iteration 2584: log pseudolikelihood = -874.49287
Fractional heteroskedastic probit regression Number of obs = 2,007
Wald chi2(19) = 4.51
Prob > chi2 = 0.9997
Log pseudolikelihood = -874.49287 Pseudo R2 = 0.0297
---------------------------------------------------------------------------------------------
| Robust
f_n_p1p2p3_corrupcion | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
f_n_p1p2p3_corrupcion |
paro | .0004344 .0003959 1.10 0.273 -.0003415 .0012104
educ | -.0034432 .01302 -0.26 0.791 -.0289619 .0220755
internet | .0002027 .0001974 1.03 0.304 -.0001841 .0005895
pibpc | .0002006 .000211 0.95 0.342 -.000213 .0006142
ciclo | -.0000231 .0000245 -0.94 0.346 -.0000712 .0000249
provincias | .0000824 .0001384 0.60 0.552 -.0001889 .0003537
habitantes | 1.01e-09 1.69e-09 0.60 0.548 -2.29e-09 4.32e-09
denspob | 4.79e-06 6.20e-06 0.77 0.440 -7.37e-06 .0000169
pobdep | .1106881 .1109048 1.00 0.318 -.1066814 .3280575
pobinm | -.0045794 .0083798 -0.55 0.585 -.0210035 .0118447
ubisigpol | -.0000995 .0002998 -0.33 0.740 -.0006871 .0004881
d_ideo_cuadra_votante_gob_3 | -.0001631 .0001693 -0.96 0.335 -.000495 .0001687
mayabs_numero | .0009665 .001033 0.94 0.349 -.0010582 .0029911
indfp | -.0057786 .0055872 -1.03 0.301 -.0167293 .0051722
aligob_numero | .0000267 .0002772 0.10 0.923 -.0005166 .00057
partelec | .0000385 .0000312 1.23 0.217 -.0000226 .0000996
legcons | .0001257 .0001334 0.94 0.346 -.0001357 .0003871
gp | 5.00e-11 2.55e-10 0.20 0.845 -4.50e-10 5.50e-10
saldopre | -4.54e-10 4.74e-10 -0.96 0.338 -1.38e-09 4.75e-10
deuda | -5.19e-11 6.34e-11 -0.82 0.413 -1.76e-10 7.23e-11
gi | -2.66e-09 2.79e-09 -0.96 0.339 -8.12e-09 2.80e-09
gc | -7.87e-10 1.17e-09 -0.67 0.500 -3.07e-09 1.50e-09
presfisc | 7.26e-06 .0004806 0.02 0.988 -.0009347 .0009492
autfin | -.005323 .0047033 -1.13 0.258 -.0145414 .0038954
remanente | 3.23e-13 3.87e-13 0.84 0.403 -4.35e-13 1.08e-12
_cons | -.0620295 .0547684 -1.13 0.257 -.1693736 .0453146
----------------------------+----------------------------------------------------------------
lnsigma |
paro | -.0505771 .004836 -10.46 0.000 -.0600555 -.0410987
educ | -5.317301 1.390939 -3.82 0.000 -8.043491 -2.59111
internet | .013611 .0031864 4.27 0.000 .0073657 .0198563
pibpc | -.064425 .0141549 -4.55 0.000 -.0921681 -.0366818
ciclo | .0003744 .0012394 0.30 0.763 -.0020548 .0028036
provincias | .0125249 .0167076 0.75 0.453 -.0202213 .0452711
habitantes | 5.95e-08 1.02e-07 0.58 0.561 -1.41e-07 2.60e-07
denspob | -.0003132 .0003525 -0.89 0.374 -.0010041 .0003777
pobdep | 1.743201 2.66053 0.66 0.512 -3.471342 6.957744
pobinm | 2.233358 .7799517 2.86 0.004 .7046803 3.762035
ubisigpol | .1406856 .1034532 1.36 0.174 -.062079 .3434502
d_ideo_cuadra_votante_gob_3 | .0150148 .01456 1.03 0.302 -.0135223 .0435519
mayabs_numero | -.0523526 .1215787 -0.43 0.667 -.2906424 .1859373
indfp | -.3644068 .4378658 -0.83 0.405 -1.222608 .4937944
aligob_numero | -.0043678 .0753021 -0.06 0.954 -.1519572 .1432216
partelec | -.0230958 .0066734 -3.46 0.001 -.0361754 -.0100161
legcons | -.0019291 .0153492 -0.13 0.900 -.0320129 .0281547
gp | -8.98e-08 3.66e-08 -2.46 0.014 -1.61e-07 -1.81e-08
saldopre | -8.07e-09 2.55e-08 -0.32 0.752 -5.81e-08 4.20e-08
deuda | 4.76e-08 5.54e-09 8.59 0.000 3.68e-08 5.85e-08
gi | 1.60e-07 8.77e-08 1.83 0.068 -1.18e-08 3.32e-07
gc | 6.43e-08 6.20e-08 1.04 0.300 -5.73e-08 1.86e-07
presfisc | .2029782 .0573729 3.54 0.000 .0905293 .3154271
autfin | 1.58897 .4407269 3.61 0.000 .725161 2.452779
remanente | 7.28e-11 2.45e-11 2.97 0.003 2.47e-11 1.21e-10
---------------------------------------------------------------------------------------------
. test [lnsigma]
( 1) [lnsigma]paro = 0
( 2) [lnsigma]educ = 0
( 3) [lnsigma]internet = 0
( 4) [lnsigma]pibpc = 0
( 5) [lnsigma]ciclo = 0
( 6) [lnsigma]provincias = 0
( 7) [lnsigma]habitantes = 0
( 8) [lnsigma]denspob = 0
( 9) [lnsigma]pobdep = 0
(10) [lnsigma]pobinm = 0
(11) [lnsigma]ubisigpol = 0
(12) [lnsigma]d_ideo_cuadra_votante_gob_3 = 0
(13) [lnsigma]mayabs_numero = 0
(14) [lnsigma]indfp = 0
(15) [lnsigma]aligob_numero = 0
(16) [lnsigma]partelec = 0
(17) [lnsigma]legcons = 0
(18) [lnsigma]gp = 0
(19) [lnsigma]saldopre = 0
(20) [lnsigma]deuda = 0
(21) [lnsigma]gi = 0
(22) [lnsigma]gc = 0
(23) [lnsigma]presfisc = 0
(24) [lnsigma]autfin = 0
(25) [lnsigma]remanente = 0
Constraint 25 dropped
chi2( 24) = 874.29
Prob > chi2 = 0.0000
Related Posts with Why are there more significantly nonzero parameters in the fracglm estimate, than in the fracreg probit?
Multilevel regression - problem lrtest and standard errorsHi all, I am currently working on my first project using STATA. I used mixed, trying to calculate a…
Merging with dates, ignoring missing values.Hello, I am trying to merge two datasets, one with stock price, so per company an observation per b…
Gen event variable for recurrent survival analysisHello everyone. I'm trying to create an event variable for my analysis. My objective is to gen a var…
Stata EGI module issueI am trying to calculate the EGI (Ellison and Glaeser's index of geographical concentration) using t…
Regression results interpretationHello everybody, I am currently doing data analysis and got stuck by the interpretation of my resul…
Subscribe to:
Post Comments (Atom)
0 Response to Why are there more significantly nonzero parameters in the fracglm estimate, than in the fracreg probit?
Post a Comment