A new day a new question. I have now done a rolling window regression according to CAPM model and thus determined my time series alphas and betas. Now I want to do the whole thing with the Fama French 3 Factor Model- The variables for smb and hml I have given. However, I want to keep the variables of alpha and beta from the CAPM model and generate new variables for alpha, beta 2 and beta 3, also for a period of 24 months. And after that I have to do this regression again with Carhart 4 factor Model and given MOM factor. An overall question I have is: Does the Alpha and Beta 1 change when applying the Fama French model or does it stay the same like in the CAPM model and only the new Betas are following? The goal in the end is to create mean Alphas divide them into Quintiles based on their Turnover Ratio to see if more active fonds perform better.
clear
input double portfolioid float mofd double(smb hml Alpha Beta)
4 439 .0231 -.0058 .0011276676681867825 1.2582311269663249
4 440 -.0079 -.0375 -.00066037569874813 1.4018742984812849
4 441 -.041100000000000005 .0479 -.003203570453383219 1.4122109199175594
4 442 -.036000000000000004 .0015 -.005067735517733929 1.355875609082542
4 443 .0308 .0101 -.004276204678426189 1.3299128910546867
4 444 -.015300000000000001 -.0236 -.00264340576862393 1.2650903114961072
4 445 -.026099999999999998 .0467 -.004977918697552257 1.3431614071668685
4 446 -.0033 .0385 -.0013603183772131176 1.2780154835862378
4 447 -.052000000000000005 -.0103 -.0020266099299921167 1.2059703395801908
4 448 .0483 -.0437 -.0011593780606042707 1.31435990940695
4 449 .015 .0076 -.0017615356820123058 1.3171521637192598
4 450 -.0252 -.0013 -.0024929980839788132 1.1887365089356519
4 451 .0735 .013600000000000001 .0028820224147934476 1.052381136162448
4 452 .0268 -.0022 .004593126737425821 1.107596270636486
4 453 -.0079 .022000000000000002 .003565814453837919 1.1359603071001119
4 454 -.0506 .0098 .0015064737708275246 1.1076438503130182
4 455 -.0239 .0382 -.001450077625743531 1.113812080451299
4 456 -.009300000000000001 -.020499999999999997 .0025399518285950835 1.1037358810718263
4 457 .0032 -.0091 -.00008314149448057293 1.0701662544985826
4 458 -.0101 .0125 -.00264706689732443 1.071068086961803
4 459 .0048 .0034000000000000002 -.0046777288729113395 1.0582751471024578
4 460 -.0354 .041299999999999996 -.00914245381680592 1.091173464905962
4 461 -.0313 -.0217 -.00700097423044709 1.0418785338348306
4 462 -.0492 -.011699999999999999 -.008433296568919339 1.0577201843378217
4 463 -.0574 .051699999999999996 -.013204861540199477 1.2129156439573077
4 464 -.002 -.038 -.014364183593742185 1.196618857079138
4 465 -.032 -.026699999999999998 -.015444051513141611 1.1553881750332935
4 466 .0116 -.0352 -.01279344256693269 1.212134473367146
4 467 -.0031 -.046799999999999994 -.009466272067912462 1.3071835246479455
4 468 .0087 -.055999999999999994 -.007383238950604474 1.3275470634435544
4 469 -.0558 .016200000000000003 -.006018720126566169 1.3215990484788809
4 470 -.0384 -.028900000000000002 -.006023297375925912 1.3569408906521836
4 471 .032 .023700000000000002 -.0032789059631669858 1.381550354500943
4 472 .0363 .026699999999999998 -.004582010000065449 1.359300783394689
4 473 .0348 -.04190000000000001 -.0033608506502379766 1.3781827796152266
4 474 .0222 .005 .0007751663600516108 1.3989994612642689
4 475 -.013000000000000001 -.0088 -.0004450044521979099 1.4382687226428141
4 476 .0315 -.029900000000000003 .0006037295772227964 1.4079304046767325
4 477 -.06860000000000001 -.0313 .0023284462734532926 1.435825313138035
4 478 .0796 -.0801 .009645787785370119 1.4936431929735288
4 479 .0724 -.094 .016357732373009762 1.6044313280489981
4 480 .0435 .0006 .01597773318892428 1.5946455737985565
4 481 .2232 -.1311 .027394798933897874 1.6992565318944537
4 482 -.16699999999999998 .0797 .022705446549832985 1.6150227037789622
4 483 -.0787 .0929 .02714756186533702 1.5311388726294246
4 484 -.050499999999999996 .0387 .02905797453659893 1.5113798309819366
4 485 .13720000000000002 -.1018 .0325332487512009 1.5407386848023146
4 486 -.0276 .0855 .03539859656314524 1.5129316398483346
4 487 -.009399999999999999 -.0129 .03952823818555333 1.4413293810263585
4 488 -.0194 .0682 .04010228565448254 1.508162664132336
4 489 -.036699999999999997 .047 .0395180477500601 1.7276303539624807
4 490 -.031200000000000002 .1229 .03805323807267757 1.8454745871451168
4 491 .015 .0611 .039059513800083615 1.8075571043821559
4 492 .0708 -.056600000000000004 .03618047031114062 1.7719855556708064
4 493 -.011699999999999999 .1391 .04044433959165882 1.6364718551310553
4 494 .0054 .0622 .04133914859278934 1.6409544591072212
4 495 .0024 -.0438 .041312379120544175 1.6210791411003753
4 496 .0305 .028300000000000002 .04032862324377629 1.5982747032873128
4 497 .064 -.022799999999999997 .039515050400760664 1.605425821043517
4 498 -.0415 .0556 .03921126931429379 1.6096129702114477
4 499 .0216 .032799999999999996 .037104918792983395 1.6387696597258556
4 500 -.0654 .0182 .036233238601829657 1.666017326014775
4 501 .06860000000000001 -.07150000000000001 .03443272530766962 1.650894618243433
4 502 .0040999999999999995 .0069 .02526996563362867 1.5044371281541726
4 503 .0513 .004699999999999999 .019073450673706516 1.3709393835160322
4 504 .0115 .0339 .018588612534819627 1.3731733858779236
4 505 -.016200000000000003 .038900000000000004 .007151904262588452 1.2501049977419219
4 506 .0431 .011200000000000002 .014357413609561769 1.3780569644227463
4 507 .059000000000000004 .0421 .014499444223885 1.3921632021599477
4 508 -.037000000000000005 .0255 .013921937092171734 1.3902319525124722
4 509 .0355 .015 .01271685737387346 1.3300269472123742
4 510 -.052199999999999996 -.0362 .012079164666963182 1.347059628385688
4 511 -.0226 .0229 .00716736984339204 1.246875507800501
4 512 .0275 .0131 .00788063315810916 1.176088227792914
4 513 -.0298 -.0645 .00681633879941004 1.1024467023764373
4 514 .032 -.0159 .006783476955592701 .9574366968811625
4 515 -.0045000000000000005 .0388 .0008174012149019787 .9282927484776891
4 516 .0139 -.008199999999999999 .00277341205796916 .9519475110158521
4 517 -.0027 -.014499999999999999 .0017975961479823905 .9865480266990998
4 518 .0073 -.0158 .002657955196104919 .9887523775601875
4 519 .0111 -.0009 .0009851211820280752 .9489484757852131
4 520 .048 .0009 .0048100191602722 1.009931924480321
4 521 .015 .0070999999999999995 .005723510274338288 1.0162651853427491
4 522 .0558 -.0204 .005084054580076671 1.0257052402606504
4 523 .0265 .0176 .0074259662326077325 .9974451764705381
4 524 .006 .009300000000000001 .01017841319013133 .9094270020647715
4 525 .028900000000000002 .0169 .011344522290153904 .9356177934221122
4 526 .0225 .0139 .0119847233815383 .9530052601641461
4 527 -.027999999999999997 .0278 .00846514544659567 .9041195373359033
4 528 .0263 .0166 .00872006067702675 .9031825818984502
4 529 -.011899999999999999 .0044 .007937297081933515 .8981742842069178
4 530 .019 -.0005 .008264231995338047 .9179754072471189
4 531 -.025699999999999997 -.0167 .002626290973518384 1.0048314540166439
4 532 -.0019 -.0026 .004769733071080048 1.0056063740699328
4 533 .023399999999999997 .0163 .004288828037580048 1.0288279960686055
4 534 -.0377 .045599999999999995 .0030103450348373043 1.0308271783454848
4 535 -.015700000000000002 .0124 .0010676980608890965 1.0389759514987018
4 536 .029300000000000003 .004699999999999999 -.00198054981620948 1.2362266866201386
4 537 .0039000000000000003 -.008199999999999999 -.0002576709104457238 1.3656707315021561
4 538 .041299999999999996 .0194 .001719370536849455 1.5219219722006376
end
Related Posts with Fama French
graph constant variablesHi, for example i have 3 variables with constans and i want to graph a line that follows each consta…
Gsem function and Xt ?Dear honourable members, I am running a longitudinal data analysis using the gsem command according…
Selecting a sub-sample of a survival dataset, such that the mortality rate (-strate-) in the selected sub-sample achieves a certain targetStata MP 14.2, OSX 10.15.4 I am looking for an approach, be it by simulation or other, that will he…
Averages depending on dummy-value (RESHAPE?)Hi everyone, I have panel data in long format, grouped by ID & Age (in days). Additionally, I ha…
ivreg2 exogeneity test vs. biprobit exogeneity test, contradictory resultsHello Stata Listers, I am using Stata 15.1. My dependent variable is nonreceipt of a measles, mumps…
Subscribe to:
Post Comments (Atom)
0 Response to Fama French
Post a Comment