I have monthly observations from various funds over along amount of time but the time series are unbalanced. For each fund I have an average alpha pro fund and a turnover ratio per year and now I want to divide the turnover ratio into quintiles and then sort the mean alphas into the correct turnover quintiles to see in the end which quintile has the best alphas.(i. e. Do more active fonds perform better?)
In the end I need two panels: Panel A that divides every observation in the quintiles, so that one fund can jump into quintiles and Panel B where I measure a mean Turnover for each funds and a mean Alpha for each fund an divide each fund in one fixed quintile based on their mean Turnover Ratio and Alpha.
My data in dataex:
clear
input double(portfolioid Turnover) float mean_Turnover double AlphaCAPM float mean_AlphaCAPM
4 1.6770000457763672 1.417865 .0011276676681867825 -.0006093712
4 1.6770000457763672 1.417865 -.00066037569874813 -.0006093712
4 1.6770000457763672 1.417865 -.003203570453383219 -.0006093712
4 1.6770000457763672 1.417865 -.005067735517733929 -.0006093712
4 1.6770000457763672 1.417865 -.004276204678426189 -.0006093712
4 1.6770000457763672 1.417865 -.00264340576862393 -.0006093712
4 1.6770000457763672 1.417865 -.004977918697552257 -.0006093712
4 1.6770000457763672 1.417865 -.0013603183772131176 -.0006093712
4 1.6770000457763672 1.417865 -.0020266099299921167 -.0006093712
4 1.6770000457763672 1.417865 -.0011593780606042707 -.0006093712
4 1.6770000457763672 1.417865 -.0017615356820123058 -.0006093712
4 1.6770000457763672 1.417865 -.0024929980839788132 -.0006093712
4 1.6770000457763672 1.417865 .0028820224147934476 -.0006093712
4 1.6770000457763672 1.417865 .004593126737425821 -.0006093712
4 1.6770000457763672 1.417865 .003565814453837919 -.0006093712
4 1.6770000457763672 1.417865 .0015064737708275246 -.0006093712
4 1.6770000457763672 1.417865 -.001450077625743531 -.0006093712
4 1.3890000581741333 1.417865 .0025399518285950835 -.0006093712
4 1.3890000581741333 1.417865 -.00008314149448057293 -.0006093712
4 1.3890000581741333 1.417865 -.00264706689732443 -.0006093712
4 1.3890000581741333 1.417865 -.0046777288729113395 -.0006093712
4 1.3890000581741333 1.417865 -.00914245381680592 -.0006093712
4 1.3890000581741333 1.417865 -.00700097423044709 -.0006093712
4 1.3890000581741333 1.417865 -.008433296568919339 -.0006093712
4 1.3890000581741333 1.417865 -.013204861540199477 -.0006093712
4 1.3890000581741333 1.417865 -.014364183593742185 -.0006093712
4 1.3890000581741333 1.417865 -.015444051513141611 -.0006093712
4 1.3890000581741333 1.417865 -.01279344256693269 -.0006093712
4 1.3890000581741333 1.417865 -.009466272067912462 -.0006093712
4 1.3890000581741333 1.417865 -.007383238950604474 -.0006093712
4 1.3890000581741333 1.417865 -.006018720126566169 -.0006093712
4 1.3890000581741333 1.417865 -.006023297375925912 -.0006093712
4 1.3890000581741333 1.417865 -.0032789059631669858 -.0006093712
4 1.3890000581741333 1.417865 -.004582010000065449 -.0006093712
4 1.3890000581741333 1.417865 -.0033608506502379766 -.0006093712
4 1.100000023841858 1.417865 .03921126931429379 -.0006093712
4 1.100000023841858 1.417865 .037104918792983395 -.0006093712
4 1.100000023841858 1.417865 .036233238601829657 -.0006093712
4 1.100000023841858 1.417865 .03443272530766962 -.0006093712
4 1.100000023841858 1.417865 .02526996563362867 -.0006093712
4 1.100000023841858 1.417865 .019073450673706516 -.0006093712
4 1.100000023841858 1.417865 .018588612534819627 -.0006093712
4 1.100000023841858 1.417865 .007151904262588452 -.0006093712
4 1.100000023841858 1.417865 .014357413609561769 -.0006093712
4 1.100000023841858 1.417865 .014499444223885 -.0006093712
4 1.100000023841858 1.417865 .013921937092171734 -.0006093712
4 1.100000023841858 1.417865 .01271685737387346 -.0006093712
4 1.5399999618530273 1.417865 .012079164666963182 -.0006093712
4 1.5399999618530273 1.417865 .00716736984339204 -.0006093712
4 1.5399999618530273 1.417865 .00788063315810916 -.0006093712
4 1.5399999618530273 1.417865 .00681633879941004 -.0006093712
4 1.5399999618530273 1.417865 .006783476955592701 -.0006093712
4 1.5399999618530273 1.417865 .0008174012149019787 -.0006093712
4 1.5399999618530273 1.417865 .00277341205796916 -.0006093712
4 1.5399999618530273 1.417865 .0017975961479823905 -.0006093712
4 1.5399999618530273 1.417865 .002657955196104919 -.0006093712
4 1.5399999618530273 1.417865 .0009851211820280752 -.0006093712
4 1.5399999618530273 1.417865 .0048100191602722 -.0006093712
4 1.5399999618530273 1.417865 .005723510274338288 -.0006093712
4 1.3799999952316284 1.417865 .005084054580076671 -.0006093712
4 1.3799999952316284 1.417865 .0074259662326077325 -.0006093712
4 1.3799999952316284 1.417865 .01017841319013133 -.0006093712
4 1.3799999952316284 1.417865 .011344522290153904 -.0006093712
4 1.3799999952316284 1.417865 .0119847233815383 -.0006093712
4 1.3799999952316284 1.417865 .00846514544659567 -.0006093712
4 1.3799999952316284 1.417865 .00872006067702675 -.0006093712
4 1.3799999952316284 1.417865 .007937297081933515 -.0006093712
4 1.3799999952316284 1.417865 .008264231995338047 -.0006093712
4 1.3799999952316284 1.417865 .002626290973518384 -.0006093712
4 1.3799999952316284 1.417865 .004769733071080048 -.0006093712
4 1.3799999952316284 1.417865 .004288828037580048 -.0006093712
4 1.5099999904632568 1.417865 .0030103450348373043 -.0006093712
4 1.5099999904632568 1.417865 .0010676980608890965 -.0006093712
4 1.5099999904632568 1.417865 -.00198054981620948 -.0006093712
4 1.5099999904632568 1.417865 -.0002576709104457238 -.0006093712
4 1.5099999904632568 1.417865 .001719370536849455 -.0006093712
4 1.5099999904632568 1.417865 -.0010946970159981077 -.0006093712
4 1.5099999904632568 1.417865 -.00041203850616485654 -.0006093712
4 1.5099999904632568 1.417865 .0008502249132824116 -.0006093712
4 1.5099999904632568 1.417865 -.0010846949403825468 -.0006093712
4 1.5099999904632568 1.417865 -.003410998505710562 -.0006093712
4 1.5099999904632568 1.417865 -.0031783749851852297 -.0006093712
4 1.5099999904632568 1.417865 -.002886334290051005 -.0006093712
4 1.5499999523162842 1.417865 -.0023420224475766208 -.0006093712
4 1.5499999523162842 1.417865 -.0011567322096284784 -.0006093712
4 1.5499999523162842 1.417865 -.002413825004820118 -.0006093712
4 1.5499999523162842 1.417865 -.003561881440058567 -.0006093712
4 1.5499999523162842 1.417865 -.004437255144742497 -.0006093712
4 1.5499999523162842 1.417865 -.001321013824925759 -.0006093712
4 1.5499999523162842 1.417865 .0009930816087858965 -.0006093712
4 1.5499999523162842 1.417865 -.000030053225495138558 -.0006093712
4 1.5499999523162842 1.417865 -.00025366199256105816 -.0006093712
4 1.5499999523162842 1.417865 .0031576600593439044 -.0006093712
4 1.5499999523162842 1.417865 .0017091193316435445 -.0006093712
4 1.5499999523162842 1.417865 .002972087483720765 -.0006093712
4 1.2799999713897705 1.417865 .0015071261897042498 -.0006093712
4 1.2799999713897705 1.417865 -.000771124694131986 -.0006093712
4 1.2799999713897705 1.417865 -.002834069970186823 -.0006093712
4 1.2799999713897705 1.417865 -.0039409218708400025 -.0006093712
4 1.2799999713897705 1.417865 -.004219105288234017 -.0006093712
end
Related Posts with Quintile Sorting two variables
Generate sequencial dicotomic variableHi all, I am trying to alternate position label (pos=6 and pos=12) in a scatter graph, for this pur…
Using matrix as lookup tableHello, I have two datasets. I am trying to get a new variable in the second dataset, which looks up…
GLLAMM error not convergeHi all, I have date of 100 employees per company, for several companies. I would like to perform a …
Edit graph with codeI've got 20 .gph files and I need to change the titles on all of them. Can I do that with Stata comm…
Weights calculation with metapropHello, I am conducting a meta-analysis of prevalence proportions using a random effects model with …
Subscribe to:
Post Comments (Atom)
0 Response to Quintile Sorting two variables
Post a Comment