I have monthly observations from various funds over along amount of time but the time series are unbalanced. For each fund I have an average alpha pro fund and a turnover ratio per year and now I want to divide the turnover ratio into quintiles and then sort the mean alphas into the correct turnover quintiles to see in the end which quintile has the best alphas.(i. e. Do more active fonds perform better?)
In the end I need two panels: Panel A that divides every observation in the quintiles, so that one fund can jump into quintiles and Panel B where I measure a mean Turnover for each funds and a mean Alpha for each fund an divide each fund in one fixed quintile based on their mean Turnover Ratio and Alpha.
My data in dataex:
clear
input double(portfolioid Turnover) float mean_Turnover double AlphaCAPM float mean_AlphaCAPM
4 1.6770000457763672 1.417865 .0011276676681867825 -.0006093712
4 1.6770000457763672 1.417865 -.00066037569874813 -.0006093712
4 1.6770000457763672 1.417865 -.003203570453383219 -.0006093712
4 1.6770000457763672 1.417865 -.005067735517733929 -.0006093712
4 1.6770000457763672 1.417865 -.004276204678426189 -.0006093712
4 1.6770000457763672 1.417865 -.00264340576862393 -.0006093712
4 1.6770000457763672 1.417865 -.004977918697552257 -.0006093712
4 1.6770000457763672 1.417865 -.0013603183772131176 -.0006093712
4 1.6770000457763672 1.417865 -.0020266099299921167 -.0006093712
4 1.6770000457763672 1.417865 -.0011593780606042707 -.0006093712
4 1.6770000457763672 1.417865 -.0017615356820123058 -.0006093712
4 1.6770000457763672 1.417865 -.0024929980839788132 -.0006093712
4 1.6770000457763672 1.417865 .0028820224147934476 -.0006093712
4 1.6770000457763672 1.417865 .004593126737425821 -.0006093712
4 1.6770000457763672 1.417865 .003565814453837919 -.0006093712
4 1.6770000457763672 1.417865 .0015064737708275246 -.0006093712
4 1.6770000457763672 1.417865 -.001450077625743531 -.0006093712
4 1.3890000581741333 1.417865 .0025399518285950835 -.0006093712
4 1.3890000581741333 1.417865 -.00008314149448057293 -.0006093712
4 1.3890000581741333 1.417865 -.00264706689732443 -.0006093712
4 1.3890000581741333 1.417865 -.0046777288729113395 -.0006093712
4 1.3890000581741333 1.417865 -.00914245381680592 -.0006093712
4 1.3890000581741333 1.417865 -.00700097423044709 -.0006093712
4 1.3890000581741333 1.417865 -.008433296568919339 -.0006093712
4 1.3890000581741333 1.417865 -.013204861540199477 -.0006093712
4 1.3890000581741333 1.417865 -.014364183593742185 -.0006093712
4 1.3890000581741333 1.417865 -.015444051513141611 -.0006093712
4 1.3890000581741333 1.417865 -.01279344256693269 -.0006093712
4 1.3890000581741333 1.417865 -.009466272067912462 -.0006093712
4 1.3890000581741333 1.417865 -.007383238950604474 -.0006093712
4 1.3890000581741333 1.417865 -.006018720126566169 -.0006093712
4 1.3890000581741333 1.417865 -.006023297375925912 -.0006093712
4 1.3890000581741333 1.417865 -.0032789059631669858 -.0006093712
4 1.3890000581741333 1.417865 -.004582010000065449 -.0006093712
4 1.3890000581741333 1.417865 -.0033608506502379766 -.0006093712
4 1.100000023841858 1.417865 .03921126931429379 -.0006093712
4 1.100000023841858 1.417865 .037104918792983395 -.0006093712
4 1.100000023841858 1.417865 .036233238601829657 -.0006093712
4 1.100000023841858 1.417865 .03443272530766962 -.0006093712
4 1.100000023841858 1.417865 .02526996563362867 -.0006093712
4 1.100000023841858 1.417865 .019073450673706516 -.0006093712
4 1.100000023841858 1.417865 .018588612534819627 -.0006093712
4 1.100000023841858 1.417865 .007151904262588452 -.0006093712
4 1.100000023841858 1.417865 .014357413609561769 -.0006093712
4 1.100000023841858 1.417865 .014499444223885 -.0006093712
4 1.100000023841858 1.417865 .013921937092171734 -.0006093712
4 1.100000023841858 1.417865 .01271685737387346 -.0006093712
4 1.5399999618530273 1.417865 .012079164666963182 -.0006093712
4 1.5399999618530273 1.417865 .00716736984339204 -.0006093712
4 1.5399999618530273 1.417865 .00788063315810916 -.0006093712
4 1.5399999618530273 1.417865 .00681633879941004 -.0006093712
4 1.5399999618530273 1.417865 .006783476955592701 -.0006093712
4 1.5399999618530273 1.417865 .0008174012149019787 -.0006093712
4 1.5399999618530273 1.417865 .00277341205796916 -.0006093712
4 1.5399999618530273 1.417865 .0017975961479823905 -.0006093712
4 1.5399999618530273 1.417865 .002657955196104919 -.0006093712
4 1.5399999618530273 1.417865 .0009851211820280752 -.0006093712
4 1.5399999618530273 1.417865 .0048100191602722 -.0006093712
4 1.5399999618530273 1.417865 .005723510274338288 -.0006093712
4 1.3799999952316284 1.417865 .005084054580076671 -.0006093712
4 1.3799999952316284 1.417865 .0074259662326077325 -.0006093712
4 1.3799999952316284 1.417865 .01017841319013133 -.0006093712
4 1.3799999952316284 1.417865 .011344522290153904 -.0006093712
4 1.3799999952316284 1.417865 .0119847233815383 -.0006093712
4 1.3799999952316284 1.417865 .00846514544659567 -.0006093712
4 1.3799999952316284 1.417865 .00872006067702675 -.0006093712
4 1.3799999952316284 1.417865 .007937297081933515 -.0006093712
4 1.3799999952316284 1.417865 .008264231995338047 -.0006093712
4 1.3799999952316284 1.417865 .002626290973518384 -.0006093712
4 1.3799999952316284 1.417865 .004769733071080048 -.0006093712
4 1.3799999952316284 1.417865 .004288828037580048 -.0006093712
4 1.5099999904632568 1.417865 .0030103450348373043 -.0006093712
4 1.5099999904632568 1.417865 .0010676980608890965 -.0006093712
4 1.5099999904632568 1.417865 -.00198054981620948 -.0006093712
4 1.5099999904632568 1.417865 -.0002576709104457238 -.0006093712
4 1.5099999904632568 1.417865 .001719370536849455 -.0006093712
4 1.5099999904632568 1.417865 -.0010946970159981077 -.0006093712
4 1.5099999904632568 1.417865 -.00041203850616485654 -.0006093712
4 1.5099999904632568 1.417865 .0008502249132824116 -.0006093712
4 1.5099999904632568 1.417865 -.0010846949403825468 -.0006093712
4 1.5099999904632568 1.417865 -.003410998505710562 -.0006093712
4 1.5099999904632568 1.417865 -.0031783749851852297 -.0006093712
4 1.5099999904632568 1.417865 -.002886334290051005 -.0006093712
4 1.5499999523162842 1.417865 -.0023420224475766208 -.0006093712
4 1.5499999523162842 1.417865 -.0011567322096284784 -.0006093712
4 1.5499999523162842 1.417865 -.002413825004820118 -.0006093712
4 1.5499999523162842 1.417865 -.003561881440058567 -.0006093712
4 1.5499999523162842 1.417865 -.004437255144742497 -.0006093712
4 1.5499999523162842 1.417865 -.001321013824925759 -.0006093712
4 1.5499999523162842 1.417865 .0009930816087858965 -.0006093712
4 1.5499999523162842 1.417865 -.000030053225495138558 -.0006093712
4 1.5499999523162842 1.417865 -.00025366199256105816 -.0006093712
4 1.5499999523162842 1.417865 .0031576600593439044 -.0006093712
4 1.5499999523162842 1.417865 .0017091193316435445 -.0006093712
4 1.5499999523162842 1.417865 .002972087483720765 -.0006093712
4 1.2799999713897705 1.417865 .0015071261897042498 -.0006093712
4 1.2799999713897705 1.417865 -.000771124694131986 -.0006093712
4 1.2799999713897705 1.417865 -.002834069970186823 -.0006093712
4 1.2799999713897705 1.417865 -.0039409218708400025 -.0006093712
4 1.2799999713897705 1.417865 -.004219105288234017 -.0006093712
end
Related Posts with Quintile Sorting two variables
Staggered Difference in Difference*Hi My data has the following setup. I have individual level data for years 1995, 2000, 2005, 2010 a…
Any precise way to convert dialy to monthly: string 1/1/2019 to numeric 20190101?I have daily data in string format as 1/1/ 2019. The string length is different as there as values e…
Creating Composite Variable (from non-mutually exclusive categorial variables)Hi All, I am quite new to Stata. I have five variables which each ask whether cannabis has been con…
Panel dataDear Members I hope all is well. Please, I would like to know that : 1-) Should I use Xtset Command …
Margins not estimableHello! I am trying to look at the effect mandatory elections (Valplikt) has on satisfaction with dem…
Subscribe to:
Post Comments (Atom)
0 Response to Quintile Sorting two variables
Post a Comment