Recently, I'm conducting research, we would like to see some difference between different national identity groups. First, I applied One-way ANOVA (oneway) command to test the mean comparison among identity groups. But when I test it with pwmean command, the results changed. Does anyone know the reason and the difference between those two commands?
oneway polsati newnid5, bonferroni tabulate
new coded |
national | Summary of political satisfactory
identity | Mean Std. Dev. Freq.
------------+------------------------------------
1 | 4 1 198
2 | 4 1 115
3 | 4 1 448
4 | 4 1 50
5 | 4 1 124
------------+------------------------------------
Total | 4 1 935
Analysis of Variance
Source SS df MS F Prob > F
------------------------------------------------------------------------
Between groups 29.9813114 4 7.49532785 8.25 0.0000
Within groups 844.664678 930 .908241589
------------------------------------------------------------------------
Total 874.645989 934 .936451809
Bartlett's test for equal variances: chi2(4) = 33.8585 Prob>chi2 = 0.000
Comparison of political satisfactory by new coded national identity
(Bonferroni)
Row Mean-|
Col Mean | 1 2 3 4
---------+--------------------------------------------
2 | -0
| 1.000
|
3 | -0 -0
| 0.000 0.219
|
4 | -0 -0 -0
| 0.010 0.202 1.000
|
5 | -1 -0 -0 -0
| 0.000 0.015 0.908 1.000
Then, I tried pwmean to see the mean comparison, but I got the different answer like below:
. pwmean polsati, over(newnid5) mcompare(bonferroni) cieffects pveffects effects cimeans
Pairwise comparisons of means with equal variances
over : newnid5
--------------------------------------------------------------
| Unadjusted
polsati | Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
newnid5 |
1 | 4.419192 .067728 4.286275 4.552109
2 | 4.295652 .0888693 4.121245 4.47006
3 | 4.066964 .0450258 3.9786 4.155328
4 | 3.92 .134777 3.655498 4.184502
5 | 3.903226 .0855835 3.735267 4.071185
--------------------------------------------------------------
---------------------------
| Number of
| Comparisons
-------------+-------------
newnid5 | 10
---------------------------
-----------------------------------------------------
| Bonferroni
polsati | Contrast Std. Err. t P>|t|
-------------+---------------------------------------
newnid5 |
2 vs 1 | -.1235397 .1117355 -1.11 1.000
3 vs 1 | -.3522276 .081329 -4.33 0.000
4 vs 1 | -.4991919 .1508374 -3.31 0.010
5 vs 1 | -.5159661 .1091403 -4.73 0.000
3 vs 2 | -.2286879 .0996247 -2.30 0.219
4 vs 2 | -.3756522 .1614391 -2.33 0.202
5 vs 2 | -.3924264 .1233786 -3.18 0.015
4 vs 3 | -.1469643 .1420991 -1.03 1.000
5 vs 3 | -.1637385 .096705 -1.69 0.908
5 vs 4 | -.0167742 .1596539 -0.11 1.000
-----------------------------------------------------
even the mean of each identity groups are different in these two commands. Does anyone know how to deal with it? Thanks!
Related Posts with Question on oneway anova and pairwise comparison
Loop for adding values of every observation within variableHello statalisters, I regard my puzzle as symple but I cannot get my head around it and I have alre…
Gradient code bugDear forum visitors! I got a problem, working with panel data and max likelihood model. Specificall…
Problem specifying conditions with ipolate commandHello, I have yearly panel data on 4 variables for all U.S. states, and the data are in wide format…
Sparse group Lasso for multinomial logistic regressionHi everyone, I'm planning to do a multinomial logistic regression and would like to use the sparse …
generating a Diff-inDiff outcomeHi Everyone, I have this data example below where I need to generate a Diff-outcome. The outcome is…
Subscribe to:
Post Comments (Atom)
0 Response to Question on oneway anova and pairwise comparison
Post a Comment