Dear Statalist Team,

I have an ordered probit regression, where the outcome variable contains 4 possible outcomes. I have several explanatory variables (all of them are dummies or discrete except ln_hhincome which is continuous)
I have been reading on Statalist forum that the suitable command for marginal effects is:

margins, dydx(*) predict(outcome(1))

I would like to make sure that this is indeed true, as I have mostly dummy/discrete variables and got a bit confused when reading in the Forum.
Added below is the code and the output for my ordered probit regression:


oprobit life_satisfaction i.population i.female ln_hhincome i.age i.family_size i.pp_room i.employment i.religiosity i.health_status disability i.education i.marital_status i.hebrew_fluency i.volunteering i.region

Iteration 0: log likelihood = -5793.5337
Iteration 1: log likelihood = -5114.6857
Iteration 2: log likelihood = -5109.7377
Iteration 3: log likelihood = -5109.7363
Iteration 4: log likelihood = -5109.7363

Ordered probit regression Number of obs = 5,757
LR chi2(37) = 1367.59
Prob > chi2 = 0.0000
Log likelihood = -5109.7363 Pseudo R2 = 0.1180

----------------------------------------------------------------------------------------
life_satisfaction | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
population | .4614532 .0546173 8.45 0.000 .3544052 .5685011
female | .0149484 .0322265 0.46 0.643 -.0482144 .0781112
ln_hhincome | .1626264 .0273989 5.94 0.000 .1089256 .2163272
|
age |
30-39 | -.1690995 .0568488 -2.97 0.003 -.2805211 -.0576779
40-49 | -.1634033 .0607061 -2.69 0.007 -.2823851 -.0444215
50-59 | -.1744873 .0661828 -2.64 0.008 -.3042032 -.0447713
60-74 | .0093207 .0710499 0.13 0.896 -.1299345 .1485758
|
family_size |
2 | .1266568 .0625239 2.03 0.043 .0041123 .2492013
3-5 | .0595687 .0666954 0.89 0.372 -.0711519 .1902893
6+ | .0515747 .0851436 0.61 0.545 -.1153037 .2184532
|
pp_room |
1-<2 | -.0394693 .0405352 -0.97 0.330 -.1189169 .0399783
2+ | -.1826042 .0823416 -2.22 0.027 -.3439908 -.0212176
|
employment |
employed | -.1243722 .0451227 -2.76 0.006 -.2128111 -.0359333
unemployed | -.3091662 .0927262 -3.33 0.001 -.4909062 -.1274261
|
religiosity |
traditional | .1777507 .0379347 4.69 0.000 .1034001 .2521013
religious | .3133971 .0513464 6.10 0.000 .21276 .4140342
very religious | .816839 .073988 11.04 0.000 .6718252 .9618528
|
health_status |
health is not so good | .4514483 .084381 5.35 0.000 .2860647 .616832
health is good | .7346467 .0881405 8.33 0.000 .5618945 .9073989
health is very good | 1.182111 .09201 12.85 0.000 1.001774 1.362447
|
disability | -.1145372 .0524588 -2.18 0.029 -.2173545 -.0117199
|
education |
educ BA max | .0562342 .0474255 1.19 0.236 -.0367181 .1491865
educ MA min | .0582294 .0645186 0.90 0.367 -.0682247 .1846835
|
marital_status |
married | .2259718 .0542659 4.16 0.000 .1196127 .332331
divorced/separated | -.0962337 .0716145 -1.34 0.179 -.2365955 .0441282
widow(er) | .1105644 .0888584 1.24 0.213 -.0635948 .2847236
|
hebrew_fluency |
weak | -.1509022 .1118857 -1.35 0.177 -.3701941 .0683897
moderate | -.1368649 .1067883 -1.28 0.200 -.3461662 .0724364
good | -.145148 .1048562 -1.38 0.166 -.3506623 .0603664
very good | .1088566 .104387 1.04 0.297 -.0957381 .3134514
|
volunteering |
volunteering | .2242197 .0402992 5.56 0.000 .1452348 .3032046
|
region |
jerusalem | -.2248031 .0625378 -3.59 0.000 -.3473749 -.1022312
haifa | -.2738027 .0583237 -4.69 0.000 -.3881151 -.1594902
center | -.1712356 .0524664 -3.26 0.001 -.274068 -.0684033
tel aviv | -.3260045 .0578918 -5.63 0.000 -.4394704 -.2125387
south | -.109568 .0597541 -1.83 0.067 -.2266839 .0075479
west bank | -.0483345 .1001799 -0.48 0.629 -.2446835 .1480145
-----------------------+----------------------------------------------------------------
/cut1 | .4896097 .2576887 -.0154509 .9946703
/cut2 | 1.5144 .2568057 1.01107 2.01773
/cut3 | 3.272835 .259405 2.76441 3.781259
----------------------------------------------------------------------------------------


Hope this is clear. Please let me know if you need any more clarification.
Many thanks