I have a problem to be solved with Profit translog function. I am working on estimation of profit efficiency of 309 tourism firms for the period of 2008-2017. I have generated an NPI index (as it is done in the paper "Handling Losses in Translog Profit Models" https://www.uu.nl/sites/default/file...2007_07-17.pdf) but the Stata omitted the index because of collinearity. What can I do in this situation?
The steps I followed were:
1) I prepared the variables according the translog function terms. The variables that I have chosen are: Total Costs (tc) and EBIT as dependent variables, respectively for cost and profit efficiency function; independent output variable: Sales Revenue (y); independent input variables: Price of Labour (wl), Price of Material (wm), Price of Physical Capital (wk); explanatory variables of inefficiencies: z1 and z2 are dummies for 4*category, 5*category; z3 is Tourism Specialization and time trend.
2) I generated NPI index (an additional independent variable) that takes value 1 if EBIT > 0 and takes absolute value of EBIT if EBIT < 0.
3) I run the code
Code:
global xvar lny lny2 lnwlD lnwmD lnwlD2 lnwmD2 lnwlmD lnylnwlD lnylnwmD sfpanel lnEBITD $xvar lnNPI , model(bc95) dist(tn) emean(z1 z2 z3 trend) ort(o)
Code:
. sfpanel lnEBITD $xvar lnNPI, model(bc95) dist(tn) emean(z1 z2 z3 trend) ort(o) note: lnNPI omitted because of collinearity initial: Log likelihood = -3510.201 Iteration 0: Log likelihood = -3510.201 Iteration 1: Log likelihood = -3470.8279 (backed up) Iteration 2: Log likelihood = -3469.6762 (backed up) Iteration 3: Log likelihood = -3464.2091 (backed up) Iteration 4: Log likelihood = -3452.6898 (backed up) Iteration 5: Log likelihood = -3452.5744 (backed up) Iteration 6: Log likelihood = -3446.6273 (backed up) Iteration 7: Log likelihood = -3445.044 (backed up) Iteration 8: Log likelihood = -3444.8962 Iteration 9: Log likelihood = -3441.8692 (backed up) Iteration 10: Log likelihood = -3436.5632 Iteration 11: Log likelihood = -3436.0269 (backed up) Iteration 12: Log likelihood = -3433.2262 Iteration 13: Log likelihood = -3421.8065 Iteration 14: Log likelihood = -3421.1973 Iteration 15: Log likelihood = -3421.0309 Iteration 16: Log likelihood = -3420.9696 Iteration 17: Log likelihood = -3420.9686 Iteration 18: Log likelihood = -3420.9685 Inefficiency effects model (truncated-normal) Number of obs = 2490 Group variable: id_firm Number of groups = 301 Time variable: Year Obs per group: min = 1 avg = 8.3 max = 10 Prob > chi2 = 0.0000 Log likelihood = -3420.9685 Wald chi2(9) = 5730.61 ------------------------------------------------------------------------------ lnEBITD | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Frontier | lny | .7069243 .1499564 4.71 0.000 .4130152 1.000833 lny2 | -.0075201 .0236769 -0.32 0.751 -.053926 .0388857 lnwlD | 1.271186 .1750752 7.26 0.000 .9280453 1.614328 lnwmD | .5140178 .1494781 3.44 0.001 .2210461 .8069895 lnwlD2 | -.2564937 .0485085 -5.29 0.000 -.3515687 -.1614188 lnwmD2 | .0876356 .0443475 1.98 0.048 .0007161 .1745551 lnwlmD | .0173517 .0400604 0.43 0.665 -.0611654 .0958687 lnylnwlD | .0778734 .0274736 2.83 0.005 .0240261 .1317207 lnylnwmD | -.0923371 .0210328 -4.39 0.000 -.1335608 -.0511135 lnNPI | 3.12e-14 . . . . . _cons | -1.323453 .6169325 -2.15 0.032 -2.532618 -.1142874 -------------+---------------------------------------------------------------- Mu | z1 | -2.958116 7.321343 -0.40 0.686 -17.30768 11.39145 z2 | 22.1597 46.5821 0.48 0.634 -69.13955 113.4589 z3 | -273.8059 582.8088 -0.47 0.638 -1416.09 868.4784 trend | 2.84031 5.998347 0.47 0.636 -8.916233 14.59685 _cons | -81.86916 180.4327 -0.45 0.650 -435.5107 271.7723 -------------+---------------------------------------------------------------- Usigma | _cons | 4.129526 2.14995 1.92 0.055 -.0842985 8.34335 -------------+---------------------------------------------------------------- Vsigma | _cons | -1.057288 .0628779 -16.81 0.000 -1.180527 -.93405 -------------+---------------------------------------------------------------- sigma_u | 7.883428 8.474487 0.93 0.352 .9587267 64.82393 sigma_v | .5894035 .0185302 31.81 0.000 .5541812 .6268644 lambda | 13.37526 8.470531 1.58 0.114 -3.226672 29.9772 ------------------------------------------------------------------------------
0 Response to Help with Profit Translog Function in Stata 15, bc95 model
Post a Comment