Hi all,

I have panel data xtset across 3 waves of children's weight and parents employment status, I have continuous outcomes for continuous weight, and binary outcomes for binary weight. So I employ a linear and logit fixed effects regression, as necessary.

I xtset by id and year as standard:

Code:
xtset id year
After reading through the forums I decide to cluster by id to allow for correlation within individuals, I run my linear and logit regressions with and without clustering below but the changes in standard errors are absolutely tiny across regressions, and I am wondering why that is? I thought the standard errors would change more substantially? I would appreciate any feedback on this!


Linear Regression without, and then with clustering:

Code:
. xtreg child_weight parental_unemployment i.C_region_y i.year i.C_Simplemotherage_y i.C_Simplemothereduca_y i.C_mothermar_y, fe 

Fixed-effects (within) regression               Number of obs     =     28,723
Group variable: id                              Number of groups  =     10,998

R-sq:                                           Obs per group:
     within  = 0.0476                                         min =          1
     between = 0.0001                                         avg =        2.6
     overall = 0.0139                                         max =          3

                                                F(12,17713)       =      73.74
corr(u_i, Xb)  = -0.0137                        Prob > F          =     0.0000

----------------------------------------------------------------------------------------------------
                            child_weight |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------------------------------+----------------------------------------------------------------
       parental_unemployment|   .0446502   .0200392     2.23   0.026     .0053714    .0839291
                      1.C_region_y |   .0057119   .0279776     0.20   0.838    -.0491269    .0605507
                                   |
                              year |
                                1  |   .1893615   .0120075    15.77   0.000     .1658255    .2128974
                                2  |  -.1486756   .0140992   -10.54   0.000    -.1763115   -.1210398
                                   |
               C_Simplemotherage_y |
                            30-39  |   .0065484   .0249831     0.26   0.793    -.0424209    .0555176
                       40 or more  |  -.0054981   .0365407    -0.15   0.880    -.0771215    .0661253
                                   |
             C_Simplemothereduca_y |
Leaving Certificate to Non Degree  |   .0795771   .0455652     1.75   0.081    -.0097351    .1688893
        Primary Degree or greater  |    .067113    .055558     1.21   0.227     -.041786    .1760121
                                   |
                     C_mothermar_y |
                                2  |   .0311255   .0577674     0.54   0.590    -.0821043    .1443553
                                3  |   .0070032   .0835212     0.08   0.933    -.1567065     .170713
                                4  |  -.0286678   .0350783    -0.82   0.414    -.0974247    .0400892
                                5  |  -.1179898   .2767082    -0.43   0.670    -.6603651    .4243854
                                   |
                             _cons |   .6588401   .0494201    13.33   0.000     .5619718    .7557083
-----------------------------------+----------------------------------------------------------------
                           sigma_u |  .90804604
                           sigma_e |  .75347921
                               rho |  .59222892   (fraction of variance due to u_i)
----------------------------------------------------------------------------------------------------
F test that all u_i=0: F(10997, 17713) = 3.54                Prob > F = 0.0000



. xtreg child_weight parental_unemploymenti.C_region_y i.year i.C_Simplemotherage_y i.C_Simplemothereduca_y i.C_mothermar_y, cluster
>  (id) fe 

Fixed-effects (within) regression               Number of obs     =     28,723
Group variable: id                              Number of groups  =     10,998

R-sq:                                           Obs per group:
     within  = 0.0476                                         min =          1
     between = 0.0001                                         avg =        2.6
     overall = 0.0139                                         max =          3

                                                F(12,10997)       =     101.16
corr(u_i, Xb)  = -0.0137                        Prob > F          =     0.0000

                                                      (Std. Err. adjusted for 10,998 clusters in id)
----------------------------------------------------------------------------------------------------
                                   |               Robust
                            child_weight |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------------------------------+----------------------------------------------------------------
       parental_unemployment|   .0446502    .019911     2.24   0.025     .0056211    .0836794
                      1.C_region_y |   .0057119   .0286117     0.20   0.842    -.0503723     .061796
                                   |
                              year |
                                1  |   .1893615   .0122001    15.52   0.000      .165447    .2132759
                                2  |  -.1486756   .0151289    -9.83   0.000     -.178331   -.1190202
                                   |
               C_Simplemotherage_y |
                            30-39  |   .0065484     .02654     0.25   0.805    -.0454747    .0585715
                       40 or more  |  -.0054981    .037494    -0.15   0.883    -.0789932    .0679969
                                   |
             C_Simplemothereduca_y |
Leaving Certificate to Non Degree  |   .0795771    .048462     1.64   0.101    -.0154172    .1745714
        Primary Degree or greater  |    .067113   .0577993     1.16   0.246     -.046184    .1804101
                                   |
                     C_mothermar_y |
                                2  |   .0311255   .0577588     0.54   0.590    -.0820921    .1443432
                                3  |   .0070032   .0815093     0.09   0.932    -.1527698    .1667762
                                4  |  -.0286678   .0367906    -0.78   0.436     -.100784    .0434485
                                5  |  -.1179898   .2688433    -0.44   0.661    -.6449709    .4089913
                                   |
                             _cons |   .6588401   .0523982    12.57   0.000     .5561303    .7615499
-----------------------------------+----------------------------------------------------------------
                           sigma_u |  .90804604
                           sigma_e |  .75347921
                               rho |  .59222892   (fraction of variance due to u_i)
----------------------------------------------------------------------------------------------------
Binary regression without and then with clustering:

Code:
. xtlogit child_overweight parental_unemployment i.C_region_y i.year i.C_Simplemotherage_y i.C_Simplemothereduca_y i.C_
> mothermar_y, fe nolog
note: multiple positive outcomes within groups encountered.
note: 9,053 groups (23,188 obs) dropped because of all positive or
      all negative outcomes.

Conditional fixed-effects logistic regression   Number of obs     =      5,535
Group variable: id                              Number of groups  =      1,945

                                                Obs per group:
                                                              min =          2
                                                              avg =        2.8
                                                              max =          3

                                                LR chi2(12)       =     238.71
Log likelihood  = -1895.8084                    Prob > chi2       =     0.0000

----------------------------------------------------------------------------------------------------
           child_overweight |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------------------+----------------------------------------------------------------
       parental_unemployment|   .2703107   .1005604     2.69   0.007      .073216    .4674055
                      1.C_region_y |    -.01998   .1507955    -0.13   0.895    -.3155338    .2755738
                                   |
                              year |
                                1  |   .3139058   .0597481     5.25   0.000     .1968016      .43101
                                2  |  -.5732491   .0756048    -7.58   0.000    -.7214318   -.4250664
                                   |
               C_Simplemotherage_y |
                            30-39  |  -.0116609   .1240282    -0.09   0.925    -.2547516    .2314298
                       40 or more  |  -.1112382   .1878247    -0.59   0.554    -.4793678    .2568914
                                   |
             C_Simplemothereduca_y |
Leaving Certificate to Non Degree  |   .4152802   .2192234     1.89   0.058    -.0143897    .8449501
        Primary Degree or greater  |    .494528    .280466     1.76   0.078    -.0551753    1.044231
                                   |
                     C_mothermar_y |
                                2  |  -.0497614   .2948567    -0.17   0.866    -.6276699    .5281471
                                3  |  -.3611571   .4263245    -0.85   0.397    -1.196738    .4744236
                                4  |  -.1193666   .1744257    -0.68   0.494    -.4612347    .2225015
                                5  |   .7634075    1.06593     0.72   0.474    -1.325777    2.852592
----------------------------------------------------------------------------------------------------

. margins, dydx(parental_unemployment) post

Average marginal effects                        Number of obs     =      5,535
Model VCE    : OIM

Expression   : Pr(child_overweight |fixed effect is 0), predict(pu0)
dy/dx w.r.t. : parental_unemployment

---------------------------------------------------------------------------------------------
                            |            Delta-method
                            |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
parental_unemployment|   .0636173   .0236439     2.69   0.007      .017276    .1099585
---------------------------------------------------------------------------------------------

. clogit child_overweight parental_unemployment i.C_region_y i.year i.C_Simplemotherage_y i.C_Simplemothereduca_y i.C_mo
> thermar_y, cluster (id) group(id) nolog
note: multiple positive outcomes within groups encountered.
note: 9,053 groups (23,188 obs) dropped because of all positive or
      all negative outcomes.

Conditional (fixed-effects) logistic regression

                                                Number of obs     =      5,535
                                                Wald chi2(12)     =     263.94
                                                Prob > chi2       =     0.0000
Log pseudolikelihood = -1895.8084               Pseudo R2         =     0.0592

                                                       (Std. Err. adjusted for 1,945 clusters in id)
----------------------------------------------------------------------------------------------------
                                   |               Robust
           child_overweight |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------------------+----------------------------------------------------------------
       parental_unemployment |   .2703107   .0994143     2.72   0.007     .0754623    .4651592
                      1.C_region_y |    -.01998   .1528584    -0.13   0.896    -.3195769    .2796169
                                   |
                              year |
                                1  |   .3139058   .0607449     5.17   0.000      .194848    .4329637
                                2  |  -.5732491   .0784456    -7.31   0.000    -.7269997   -.4194985
                                   |
               C_Simplemotherage_y |
                            30-39  |  -.0116609   .1317873    -0.09   0.929    -.2699592    .2466374
                       40 or more  |  -.1112382   .1918091    -0.58   0.562    -.4871771    .2647007
                                   |
             C_Simplemothereduca_y |
Leaving Certificate to Non Degree  |   .4152802   .2267121     1.83   0.067    -.0290673    .8596277
        Primary Degree or greater  |    .494528   .2943118     1.68   0.093    -.0823125    1.071368
                                   |
                     C_mothermar_y |
                                2  |  -.0497614   .2919635    -0.17   0.865    -.6219994    .5224765
                                3  |  -.3611571   .3862521    -0.94   0.350    -1.118197    .3958831
                                4  |  -.1193666   .1801217    -0.66   0.508    -.4723987    .2336655
                                5  |   .7634075   1.114672     0.68   0.493    -1.421309    2.948124
----------------------------------------------------------------------------------------------------

. margins, dydx(parental_unemployment) post

Average marginal effects                        Number of obs     =      5,535
Model VCE    : Robust

Expression   : Pr(child_overweight |fixed effect is 0), predict(pu0)
dy/dx w.r.t. : parental_unemployment

---------------------------------------------------------------------------------------------
                            |            Delta-method
                            |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------------------+----------------------------------------------------------------
parental_unemployment|   .0636173   .0234081     2.72   0.007     .0177382    .1094963
---------------------------------------------------------------------------------------------

Thanks for your help,

John