Greetings,

I'm running Stata 15 on OSX and working with panel data. My goal is to test and compare the effects of an attitudinal measure ('srZ16_mean' in the output below) on two different but identically scaled dependent variables (i.e. 0-100 feeling thermometers that correspond to different social groups; ftpoorwhmen and ftpoorblkmen in the output below).

While I know how obtain the predicted margins for each model separately:

Code:
. regress ftpoorblkmen srZ16_mean if white==1 & year==2019 [pweight= weight_2019], cluster(inputstate2_2019
> )
(sum of wgt is 842.8974449260362)

Linear regression                               Number of obs     =      1,072
                                                F(1, 49)          =      16.90
                                                Prob > F          =     0.0001
                                                R-squared         =     0.0296
                                                Root MSE          =     23.686

                      (Std. Err. adjusted for 50 clusters in inputstate2_2019)
------------------------------------------------------------------------------
             |               Robust
ftpoorblkmen |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  srZ16_mean |  -4.418421    1.07468    -4.11   0.000     -6.57807   -2.258771
       _cons |    59.5167   .9704558    61.33   0.000     57.56649     61.4669
------------------------------------------------------------------------------

. margins, at(srZ16_mean=(-1.77 -1 0 1 1.21)) 

Adjusted predictions                            Number of obs     =      1,072
Model VCE    : Robust

Expression   : Linear prediction, predict()

1._at        : srZ16_mean      =       -1.77

2._at        : srZ16_mean      =          -1

3._at        : srZ16_mean      =           0

4._at        : srZ16_mean      =           1

5._at        : srZ16_mean      =        1.21

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |    67.3373   1.729827    38.93   0.000     63.86108    70.81352
          2  |   63.93512    1.10044    58.10   0.000      61.7237    66.14654
          3  |    59.5167   .9704558    61.33   0.000     57.56649     61.4669
          4  |   55.09828   1.726984    31.90   0.000     51.62777    58.56878
          5  |   54.17041   1.924705    28.14   0.000     50.30257    58.03825
------------------------------------------------------------------------------

. regress ftpoorwhmen srZ16_mean if white==1 & year==2019 [pweight= weight_2019], cluster(inputstate2_2019)
(sum of wgt is 859.4959562645565)

Linear regression                               Number of obs     =      1,116
                                                F(1, 50)          =      57.20
                                                Prob > F          =     0.0000
                                                R-squared         =     0.0694
                                                Root MSE          =     23.685

                      (Std. Err. adjusted for 51 clusters in inputstate2_2019)
------------------------------------------------------------------------------
             |               Robust
 ftpoorwhmen |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  srZ16_mean |   6.893163   .9114091     7.56   0.000     5.062544    8.723782
       _cons |   60.84793   .7649911    79.54   0.000     59.31141    62.38446
------------------------------------------------------------------------------

. margins, at(srZ16_mean=(-1.77 -1 0 1 1.21)) 

Adjusted predictions                            Number of obs     =      1,116
Model VCE    : Robust

Expression   : Linear prediction, predict()

1._at        : srZ16_mean      =       -1.77

2._at        : srZ16_mean      =          -1

3._at        : srZ16_mean      =           0

4._at        : srZ16_mean      =           1

5._at        : srZ16_mean      =        1.21

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         _at |
          1  |   48.64704   1.771788    27.46   0.000      45.0883    52.20578
          2  |   53.95477   1.178367    45.79   0.000     51.58795    56.32159
          3  |   60.84793   .7649911    79.54   0.000     59.31141    62.38446
          4  |    67.7411   1.201336    56.39   0.000     65.32814    70.15405
          5  |   69.18866   1.354422    51.08   0.000     66.46823     71.9091
------------------------------------------------------------------------------
...I'm unsure how to test for significant differences between the margins from each model. For instance, how would I go about testing whether the margin (54.17) at point #5 from the first margins table above is significantly distinguishable from the margin (48.64) at point #1 from the second margins table? I know that suest can be used to compare coefficients from different OLS models. Can it do the same for margins? If yes, what's the correct syntax? If not, what other stata function or package would allow for this?

Here is some sample data:

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input int(ftpoorwhmen ftpoorblkmen) float srZ16_mean
 59  58  1.1724498
 59  58  1.1724498
 59  58  1.1724498
 59  58  1.1724498
 59  58  1.1724498
  6  55  -1.546768
  6  55  -1.546768
  6  55  -1.546768
  7   7    .992811
  7   7    .992811
  7   7    .992811
  7   7    .992811
  7   7    .992811
 58  60   .4453181
 58  60   .4453181
 58  60   .4453181
 25  25  .27265695
 25  25  .27265695
 25  25  .27265695
 25  25  .27265695
 25  25  .27265695
 80  50   .6045231
 80  50   .6045231
 80  50   .6045231
 80  50   .6045231
 50  50  -.8324981
 50  50  -.8324981
 50  50  -.8324981
 50  50  -.8324981
 74  70   .4383405
 74  70   .4383405
 74  70   .4383405
 74  70   .4383405
 74  70   .4383405
 72  59 -.10536642
 72  59 -.10536642
 72  59 -.10536642
 72  59 -.10536642
 72  59 -.10536642
 20   4   .4152141
 47  53 -.28500515
 47  53 -.28500515
 47  53 -.28500515
 38  70  1.1724498
 38  70  1.1724498
 38  70  1.1724498
 38  70  1.1724498
 38  70  1.1724498
 62  43    .992811
 62  43    .992811
 62  43    .992811
 62  43    .992811
 62  43    .992811
 24  39 -1.1816064
 24  39 -1.1816064
 24  39 -1.1816064
 24  39 -1.1816064
 24  39 -1.1816064
100  99   .4152141
100  99   .4152141
100  99   .4152141
100  99   .4152141
100  99   .4152141
 76  77 -.49096185
 76  77 -.49096185
 76  77 -.49096185
 76  77 -.49096185
 76  77 -.49096185
 98 100  -1.546768
 98 100  -1.546768
 98 100  -1.546768
 56  80 -1.0089453
 56  80 -1.0089453
 56  80 -1.0089453
 56  80 -1.0089453
 56  80 -1.0089453
 46  46  1.1724498
 46  46  1.1724498
 46  46  1.1724498
 46  46  1.1724498
 46  46  1.1724498
 10  69  1.1724498
 10  69  1.1724498
 10  69  1.1724498
 10  69  1.1724498
 10  69  1.1724498
 80  78    .634627
 80  78    .634627
 80  78    .634627
 80  78    .634627
 80  78    .634627
 50  50   .4453181
 50  50   .4453181
 50  50   .4453181
 39  15   .8035021
 39  15   .8035021
 39  15   .8035021
 39  15   .8035021
 39  15   .8035021
 50  50  -1.736077
end
Thanks in advance for your help!