Dear all,

I am just learning about multilevel growth models and am still a bit confused about the random part in the model. I am used to Stata's xtreg command and find it a bit tricky to change to mixed. I am using Stata 16

My research topic: I want to compare wealth trajectories in years after divorce (0=first year after divorce, 1 = 2nd year after divorce etc). My treatment group includes first-time divorced men and women. My control groups includes a group of continuously married men and women. This group is assigned an artificial divorce date. Thus the treated group has an actual time since divorce and the control group has an artificial time since divorce.

In the growth curve model I would now like to compare wealth trajectories between the men and women in the control group to men and women in the treatment group. Additionally, I am interested in differences within the groups, so between treated men and treated women. I would expect that the four types of sample respondents (treated men, treated women, control men, control women) have different trajectories. I think it would thus make sense to allow for random intercepts and random slopes for each groups average trajectory. As I have a range of interactions (to define the groups), I am now unsure if I should add each interaction also as a random part or if it is enough to define the interactions only in the level-1 part of the model.

For simplicity I first run gender-specific models (at this point without the addition of control variables):

Code:
. mixed wealth_ind_ihsa c.divduration##i.treat  || id: divduration treat if female ==1, var
> iance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -13577.383  
Iteration 1:   log likelihood = -13540.188  (not concave)
Iteration 2:   log likelihood = -13521.659  
Iteration 3:   log likelihood = -13504.702  
Iteration 4:   log likelihood = -13504.485  
Iteration 5:   log likelihood = -13504.484  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      4,156
Group variable: id                              Number of groups  =      2,011

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(3)      =     116.75
Log likelihood = -13504.484                     Prob > chi2       =     0.0000

-------------------------------------------------------------------------------------
    wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
        divduration |   .0752317   .0175084     4.30   0.000     .0409159    .1095475
                    |
              treat |
            1. yes  |  -3.050076   .3936666    -7.75   0.000    -3.821649   -2.278504
                    |
treat#c.divduration |
            1. yes  |   .0273809    .036976     0.74   0.459    -.0450908    .0998527
                    |
              _cons |   7.816075   .1991426    39.25   0.000     7.425762    8.206387
-------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
               var(divdu~on) |   1.83e-14   1.84e-14      2.54e-15    1.31e-13
                  var(treat) |   14.18267   3.054096      9.299513    21.62996
                  var(_cons) |   19.10214   1.336654      16.65405    21.91008
-----------------------------+------------------------------------------------
               var(Residual) |   23.55464   .7344161      22.15831    25.03896
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 611.09                Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. mixed wealth_ind_ihsa c.divduration##i.treat  || id: divduration treat if female ==0, var
> iance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -10978.336  
Iteration 1:   log likelihood = -10946.347  
Iteration 2:   log likelihood = -10923.592  
Iteration 3:   log likelihood = -10923.509  
Iteration 4:   log likelihood = -10923.509  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      3,374
Group variable: id                              Number of groups  =      1,578

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(3)      =      95.10
Log likelihood = -10923.509                     Prob > chi2       =     0.0000

-------------------------------------------------------------------------------------
    wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
        divduration |   .0985778   .0190893     5.16   0.000     .0611634    .1359921
                    |
              treat |
            1. yes  |  -2.580338   .4644723    -5.56   0.000    -3.490687   -1.669989
                    |
treat#c.divduration |
            1. yes  |   -.078105   .0392166    -1.99   0.046    -.1549681    -.001242
                    |
              _cons |   8.526016    .220508    38.67   0.000     8.093828    8.958204
-------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
               var(divdu~on) |   2.71e-17   3.31e-17      2.49e-18    2.96e-16
                  var(treat) |    24.9481    3.96691        18.268    34.07094
                  var(_cons) |   18.98301   1.459009      16.32837    22.06924
-----------------------------+------------------------------------------------
               var(Residual) |   22.06696   .7535283      20.63841     23.5944
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 703.34                Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
Or would it be corrent to also include the interaction into the random part of the model? I tried to do this here:

Code:
. gen divdurtreat = divduration*treat

. mixed wealth_ind_ihsa c.divduration i.treat c.divdurtreat  || id: divduration treat divdurtreat if female ==1, variance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood =   -13644.7  
Iteration 1:   log likelihood = -13634.069  (not concave)
Iteration 2:   log likelihood = -13538.835  
Iteration 3:   log likelihood = -13502.249  
Iteration 4:   log likelihood =  -13500.88  
Iteration 5:   log likelihood = -13500.872  
Iteration 6:   log likelihood = -13500.872  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      4,156
Group variable: id                              Number of groups  =      2,011

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(3)      =     118.16
Log likelihood = -13500.872                     Prob > chi2       =     0.0000

---------------------------------------------------------------------------------
wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
    divduration |   .0746747     .01738     4.30   0.000     .0406106    .1087389
                |
          treat |
        1. yes  |  -3.080063   .3923129    -7.85   0.000    -3.848982   -2.311144
    divdurtreat |   .0366243   .0399644     0.92   0.359    -.0417044     .114953
          _cons |   7.816756   .1984965    39.38   0.000      7.42771    8.205802
---------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
               var(divdur~n) |   2.21e-18   2.37e-15             0           .
                  var(treat) |   13.06161    3.11551       8.18398    20.84629
               var(divdur~t) |   .0438225   .0199468      .0179578    .1069403
                  var(_cons) |   19.43964   1.345206      16.97406    22.26335
-----------------------------+------------------------------------------------
               var(Residual) |   23.02648   .7503928      21.60173    24.54521
------------------------------------------------------------------------------
LR test vs. linear model: chi2(4) = 618.32                Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. mixed wealth_ind_ihsa c.divduration i.treat c.divdurtreat  || id: divduration treat divdurtreat if female ==0, variance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -11012.846  
Iteration 1:   log likelihood = -10925.717  (not concave)
Iteration 2:   log likelihood = -10920.256  
Iteration 3:   log likelihood = -10917.022  
Iteration 4:   log likelihood = -10917.008  
Iteration 5:   log likelihood = -10917.008  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      3,374
Group variable: id                              Number of groups  =      1,578

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(3)      =      95.03
Log likelihood = -10917.008                     Prob > chi2       =     0.0000

---------------------------------------------------------------------------------
wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
    divduration |   .0972924   .0188135     5.17   0.000     .0604187    .1341662
                |
          treat |
        1. yes  |  -2.556076   .4609884    -5.54   0.000    -3.459596   -1.652555
    divdurtreat |  -.0880446   .0443864    -1.98   0.047    -.1750404   -.0010488
          _cons |   8.530427   .2191675    38.92   0.000     8.100867    8.959987
---------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
               var(divdur~n) |   9.30e-25   1.04e-24      1.04e-25    8.33e-24
                  var(treat) |    22.8626   4.072005      16.12576     32.4139
               var(divdur~t) |   .0824965    .030153       .040301    .1688711
                  var(_cons) |   19.62524   1.474194      16.93851    22.73814
-----------------------------+------------------------------------------------
               var(Residual) |   21.09708   .7737775      19.63373     22.6695
------------------------------------------------------------------------------
LR test vs. linear model: chi2(4) = 716.34                Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.


To compare between men and women in one models, I will have to add another interaction, which should look like this:


Code:
. mixed wealth_ind_ihsa c.divduration##i.treat##i.female || id: divduration treat, variance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -24557.921  
Iteration 1:   log likelihood = -24487.306  
Iteration 2:   log likelihood = -24463.858  
Iteration 3:   log likelihood = -24432.148  
Iteration 4:   log likelihood = -24431.428  
Iteration 5:   log likelihood = -24431.428  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      7,530
Group variable: id                              Number of groups  =      3,589

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(7)      =     229.81
Log likelihood = -24431.428                     Prob > chi2       =     0.0000

--------------------------------------------------------------------------------------------
           wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------------------+----------------------------------------------------------------
               divduration |   .0990835   .0193693     5.12   0.000     .0611204    .1370467
                           |
                     treat |
                   1. yes  |  -2.589135   .4540284    -5.70   0.000    -3.479014   -1.699256
                           |
       treat#c.divduration |
                   1. yes  |  -.0755784   .0394343    -1.92   0.055    -.1528681    .0017114
                           |
                    female |
                   1. yes  |  -.7077551   .2977783    -2.38   0.017     -1.29139   -.1241204
                           |
      female#c.divduration |
                   1. yes  |  -.0242395   .0259686    -0.93   0.351     -.075137     .026658
                           |
              treat#female |
            1. yes#1. yes  |  -.4562929   .6060581    -0.75   0.452    -1.644145    .7315592
                           |
treat#female#c.divduration |
            1. yes#1. yes  |    .101074   .0540222     1.87   0.061    -.0048076    .2069555
                           |
                     _cons |   8.524302   .2230329    38.22   0.000     8.087165    8.961438
--------------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
               var(divdur~n) |   4.20e-15   2.93e-15      1.07e-15    1.65e-14
                  var(treat) |   19.06961   2.437581      14.84351    24.49893
                  var(_cons) |   19.06747    .985757      17.23008     21.1008
-----------------------------+------------------------------------------------
               var(Residual) |   22.86307   .5261591      21.85473    23.91794
------------------------------------------------------------------------------
LR test vs. linear model: chi2(3) = 1308.89               Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. margins, at(divduration=(0(1)25) treat ==(0 1) female ==(0 1)) atmeans



If I now also add all gender interactions into the random part, the random part can no longer be properly estimated:

Code:
. gen treatwomen = treat*female

. gen divdurwomen = divduration*female

. gen divdurtreat = divduration*treat

. gen divdurtreatwomen = divdurtreat*female


. mixed wealth_ind_ihsa i.treat i.treatwomen c.divduration c.divdurwomen c.divdurtreat c.di
> vdurtreatwomen || id: treat treatwomen divduration divdurwomen divdurtreat divdurtreatwom
> en, variance mle

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:   log likelihood = -25048.998  (not concave)
Iteration 1:   log likelihood =  -24621.51  
Iteration 2:   log likelihood = -24430.961  (not concave)
Iteration 3:   log likelihood = -24430.921  (backed up)
Iteration 4:   log likelihood = -24425.776  
Iteration 5:   log likelihood = -24424.608  
Iteration 6:   log likelihood = -24424.577  
Iteration 7:   log likelihood = -24424.577  

Computing standard errors:

Mixed-effects ML regression                     Number of obs     =      7,530
Group variable: id                              Number of groups  =      3,589

                                                Obs per group:
                                                              min =          1
                                                              avg =        2.1
                                                              max =          4

                                                Wald chi2(6)      =     225.87
Log likelihood = -24424.577                     Prob > chi2       =     0.0000

----------------------------------------------------------------------------------
 wealth_ind_ihsa |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------+----------------------------------------------------------------
           treat |
         1. yes  |  -2.168293   .4199046    -5.16   0.000     -2.99129   -1.345295
    1.treatwomen |  -1.223729   .5250301    -2.33   0.020    -2.252769   -.1946884
     divduration |   .1204012   .0167822     7.17   0.000     .0875086    .1532938
     divdurwomen |  -.0637083   .0196832    -3.24   0.001    -.1022866   -.0251299
     divdurtreat |  -.1063216   .0424442    -2.50   0.012    -.1895107   -.0231326
divdurtreatwomen |   .1603849   .0572352     2.80   0.005      .048206    .2725637
           _cons |   8.129163   .1472028    55.22   0.000      7.84065    8.417675
----------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
id: Independent              |
                  var(treat) |   17.49735          .             .           .
               var(treatw~n) |   2.15e-10          .             .           .
               var(divdu~on) |   6.16e-19          .             .           .
               var(d~rwomen) |   7.94e-21          .             .           .
               var(divdur~t) |    .059631          .             .           .
               var(d~twomen) |   4.09e-16          .             .           .
                  var(_cons) |   19.55695          .             .           .
-----------------------------+------------------------------------------------
               var(Residual) |   22.16909          .             .           .
------------------------------------------------------------------------------
LR test vs. linear model: chi2(7) = 1327.03               Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
I would be very grateful if someone could clarify for me what the best why is to allow for random intercepts and slopes between the four groups and if this can be achieved through the simpler model that does not include the interactions into the random part.

Thank,
Nicole