I am working on a causal study (using difference in difference design) on the effects of state nurse practitioner (NP) scope of practice (NP_sop) laws on the supply of nurse practitioners (specifically interested in NP supply in rural counties) for my dissertation. I have 3 categories of state SOP: 1 = most authority granted to NPs, 2 = moderate authority, and 3 = least authority. So 2 treatments and 3 is the untreated group. The treatments occur in multiple states and in different years from 2010-2017. Some states get treatment 2 then treatment 1 over the period of the study.
I currently have the data set up in long form by state, county, year with a 3-level categorical variable for NP SOP. Based on all I'm seeing for calculating diff-in-diff in Stata, it looks like I may need 2 variables: moderate (where 1 = moderate, 0 = least (or no treatment) and most (where 1 = most, 0 = least). However, this seems to leave out the fact that some states change from moderate to most authority during the study period. Thoughts?
Year is currently 1 variable and character type. Should I instead have a dummy variable for 2011-2017 with 2010 as the base year (0) for each dummy?
Sample data below.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float NP_rate byte fips_state_code int(fips_county_code year) float(np_sop2 modsop mostsop) 0 31 115 2015 1 0 0 0 31 115 2017 3 0 1 0 31 125 2010 1 0 0 0 31 125 2012 1 0 0 0 31 125 2015 1 0 0 3.6166365 31 133 2012 1 0 0 3.760812 31 133 2015 1 0 0 2.320724 54 21 2014 2 1 0 2.347969 54 21 2015 2 1 0 2.551237 54 23 2013 2 1 0 2.566955 54 23 2014 2 1 0 4.2495327 54 23 2015 2 1 0 6.939625 41 69 2010 3 0 1 7.012623 41 69 2011 3 0 1 14.044944 41 69 2012 3 0 1 1.9665684 42 23 2010 1 0 0 3.992016 42 23 2011 1 0 0 4.0494027 42 23 2012 1 0 0 6.729475 30 17 2012 3 0 1 9.384865 30 17 2017 3 0 1 0 30 19 2010 3 0 1 0 30 19 2011 3 0 1 0 30 19 2012 3 0 1 9.753983 30 23 2012 3 0 1 15.374478 30 23 2017 3 0 1 0 30 25 2012 3 0 1 7.03493 26 47 2010 2 1 0 7.610814 26 47 2011 2 1 0 7.595321 26 47 2012 2 1 0 8.074284 22 107 2012 1 0 0 7.754343 29 211 2013 1 0 0 6.615944 31 17 2012 1 0 0 6.788866 31 17 2015 1 0 0 3.3890646 31 27 2010 1 0 0 3.436426 31 27 2011 1 0 0 3.4301395 31 27 2012 1 0 0 2.46063 31 29 2012 1 0 0 3.1505985 20 105 2012 1 0 0 4.4528556 22 81 2012 1 0 0 0 48 341 2013 1 0 0 1.3562387 48 341 2016 1 0 0 0 48 345 2013 1 0 0 0 16 7 2015 3 0 1 3.258542 16 13 2014 3 0 1 3.2419415 16 13 2015 3 0 1 4.010159 19 1 2012 3 0 1 4.1848006 28 65 2013 1 0 0 2.537642 28 65 2014 1 0 0 2.1174104 17 67 2012 1 0 0 1.2547052 19 135 2010 3 0 1 1.241311 19 135 2011 3 0 1 1.2402332 19 135 2012 3 0 1 4.2566776 20 29 2012 1 0 0 8.639309 13 239 2014 1 0 0 8.688097 13 239 2015 1 0 0 8.667389 22 107 2017 1 0 0 1.738828 48 483 2013 1 0 0 11.185682 29 35 2014 1 0 0 11.176752 29 35 2015 1 0 0 5.243838 29 41 2013 1 0 0 5.270787 29 41 2015 1 0 0 0 46 119 2010 1 0 0 0 46 119 2012 1 0 0 1.5365704 32 27 2017 3 0 1 3.250553 55 13 2012 1 0 0 3.958045 55 13 2015 1 0 0 3.736223 41 1 2014 3 0 1 4.3736334 41 1 2015 3 0 1 8.854781 46 59 2012 1 0 0 12.206286 46 59 2017 1 0 0 0 46 61 2012 1 0 0 0 46 63 2012 1 0 0 4.1742034 46 67 2012 1 0 0 2.99931 51 1 2012 1 0 0 11.13681 47 39 2012 2 1 0 13.71507 47 39 2014 2 1 0 13.722127 47 39 2015 2 1 0 5.016722 47 49 2012 2 1 0 6.740058 50 5 2013 3 0 1 11.271714 50 5 2017 3 0 1 2.0713463 42 83 2010 1 0 0 2.78248 42 83 2012 1 0 0 3.06517 42 83 2015 1 0 0 2.725538 20 19 2010 1 0 0 5.600672 20 19 2012 1 0 0 2.2913444 42 105 2010 1 0 0 1.7189022 42 105 2011 1 0 0 1.706776 42 105 2012 1 0 0 2.2686026 42 109 2012 1 0 0 2.2252991 42 109 2015 1 0 0 6.507592 13 1 2013 1 0 0 7.044543 13 1 2015 1 0 0 0 13 3 2014 1 0 0 2.3815193 13 3 2015 1 0 0 1.8811136 16 63 2014 3 0 1 5.663583 16 63 2015 3 0 1 2.0114653 45 65 2012 1 0 0 2.0953379 45 65 2017 1 0 0 4.05954 55 91 2012 1 0 0 4.1152263 55 91 2015 1 0 0 end
Thanks in advance for your insight and recommendation.
Tammie
0 Response to Difference in Difference with multiple treatment periods and multiple treatments
Post a Comment