Hello Everyone,

I'm using panel data and tobit regression to examine whether there would be a better merger efficiency gains if Small Banks merge with Small, Medium, Large, Government owned or Foreign banks.

I’m using -xttobit- and the coefficient of the independent variables differs when I switch the position of the dummy variables.

I am using STATA 14.2 for Windows.

Here is the code I have used

Code:
xtset n_merger Year

xttobit OverallEfficiency Ssize Msize Lsize Gov, ul(1) ll(0)

Obtaining starting values for full model:

Iteration 0:   log likelihood =  328.33674
Iteration 1:   log likelihood =  328.64894
Iteration 2:   log likelihood =  328.65025

Fitting full model:

Iteration 0:   log likelihood =  172.02173  
Iteration 1:   log likelihood =  181.43146  
Iteration 2:   log likelihood =  182.33997  
Iteration 3:   log likelihood =  182.42299  
Iteration 4:   log likelihood =  182.42312  
Iteration 5:   log likelihood =  182.42312  

Random-effects tobit regression                 Number of obs     =        401
Group variable: n_merger                        Number of groups  =         99

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        4.1
                                                              max =          6

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(4)      =     200.24
Log likelihood  =  182.42312                    Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------
OverallEfficiency |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
            Ssize |  -.2414938    .029473    -8.19   0.000    -.2992598   -.1837279
            Msize |  -.2081237   .0214828    -9.69   0.000    -.2502293   -.1660181
            Lsize |  -.2931646   .0234581   -12.50   0.000    -.3391416   -.2471876
              Gov |   .0124348   .0373215     0.33   0.739    -.0607141    .0855836
            _cons |   1.057655   .0192292    55.00   0.000     1.019966    1.095343
------------------+----------------------------------------------------------------
         /sigma_u |   .0381107   .0087667     4.35   0.000     .0209282    .0552932
         /sigma_e |   .1076226   .0049301    21.83   0.000     .0979597    .1172855
------------------+----------------------------------------------------------------
              rho |   .1114244   .0489331                      .0423219    .2377307
-----------------------------------------------------------------------------------
             0  left-censored observations
           316     uncensored observations
            85 right-censored observations

.
And when I used

 xttobit OverallEfficiency For Msize Lsize Gov, ul(1) ll(0)

Obtaining starting values for full model:

Iteration 0:   log likelihood =  328.33674
Iteration 1:   log likelihood =  328.64894
Iteration 2:   log likelihood =  328.65025

Fitting full model:

Iteration 0:   log likelihood =  172.02173  
Iteration 1:   log likelihood =  181.43146  
Iteration 2:   log likelihood =  182.33997  
Iteration 3:   log likelihood =  182.42299  
Iteration 4:   log likelihood =  182.42312  
Iteration 5:   log likelihood =  182.42312  

Random-effects tobit regression                 Number of obs     =        401
Group variable: n_merger                        Number of groups  =         99

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        4.1
                                                              max =          6

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(4)      =     200.24
Log likelihood  =  182.42312                    Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------
OverallEfficiency |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
              For |   .2414938    .029473     8.19   0.000     .1837279    .2992598
            Msize |   .0333702   .0237798     1.40   0.161    -.0132375    .0799778
            Lsize |  -.0516707   .0261262    -1.98   0.048    -.1028771   -.0004644
              Gov |   .2539286   .0392377     6.47   0.000     .1770241    .3308331
            _cons |   .8161609   .0224829    36.30   0.000     .7720953    .8602266
------------------+----------------------------------------------------------------
         /sigma_u |   .0381107   .0087667     4.35   0.000     .0209282    .0552932
         /sigma_e |   .1076226   .0049301    21.83   0.000     .0979597    .1172855
------------------+----------------------------------------------------------------
              rho |   .1114244   .0489331                      .0423219    .2377307
-----------------------------------------------------------------------------------
             0  left-censored observations
           316     uncensored observations
            85 right-censored observations

.
Below is the data I'm using.

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input long n_merger int Year double OverallEfficiency byte(Ssize Msize Lsize Gov For)
1 2013 .777840162468523 1 0 0 0 0
1 2014 .667572052659211 0 1 0 0 0
1 2015 .768242260625778 0 1 0 0 0
1 2016 .567118419945576 1 0 0 0 0
1 2017 .859045334409472 1 0 0 0 0
1 2018 .926879924205817 0 1 0 0 0
2 2013 .636795487468595 0 0 1 0 0
2 2016 .679302254717641 0 0 1 0 0
2 2017 .883812355073254 0 0 1 0 0
3 2013 .807119089060473 0 1 0 0 0
3 2016 .612385336082278 0 1 0 0 0
3 2017 .803911063742677 0 1 0 0 0
4 2013 .776070621706571 0 1 0 0 0
4 2014 .701530532508148 0 1 0 0 0
4 2015 .731823498361102 0 1 0 0 0
4 2016 .671369058466319 0 1 0 0 0
4 2017 .965833027226234 0 1 0 0 0
5 2013 .523401324552278 0 0 1 0 0
5 2016 .623156844015406 0 0 1 0 0
5 2017 .818176523074846 0 0 1 0 0
6 2013 1.01338399319672 0 0 0 1 0
6 2016 .993182067949074 0 0 0 1 0
6 2017 1.0078169674446 0 0 0 1 0
7 2013 1.18448548991908 0 1 0 0 0
7 2016 .66830374684709 0 1 0 0 0
7 2017 .792138182852533 0 1 0 0 0
8 2013 .999523000545116 0 0 0 0 1
8 2016 .992094633344752 0 0 0 0 1
8 2017 1.00046492807004 0 0 0 0 1
9 2013 .756968629268395 0 0 1 0 0
9 2016 .69458727510718 0 0 1 0 0
9 2017 .862915656220076 0 0 1 0 0
10 2013 .801900948472236 1 0 0 0 0
10 2014 .685078263065857 0 1 0 0 0
10 2015 .716068248948041 0 1 0 0 0
10 2016 .559047609212464 1 0 0 0 0
10 2017 .841991507330655 1 0 0 0 0
10 2018 .949790565653028 0 1 0 0 0
11 2014 .680172473695335 0 1 0 0 0
11 2015 .75541158131174 0 1 0 0 0
11 2016 .566548333784565 1 0 0 0 0
11 2017 .786254866737269 1 0 0 0 0
11 2018 .900417035248462 0 1 0 0 0
12 2013 1.00498847869289 0 0 0 0 1
12 2016 1.00328749848233 0 0 0 0 1
12 2017 1.00589596338716 0 0 0 0 1
13 2013 1.00921479915483 0 0 0 0 1
13 2016 .991135988477932 0 0 0 0 1
13 2017 1.01109899316294 0 0 0 0 1
14 2013 .852176575054603 0 1 0 0 0
14 2016 .657874157276093 0 1 0 0 0
14 2017 .85646922850085 0 1 0 0 0
15 2013 .750996292168454 0 1 0 0 0
15 2016 .813548591097452 0 1 0 0 0
15 2017 .988408162634215 0 1 0 0 0
16 2013 .747785235898137 0 1 0 0 0
16 2016 .663220353007534 0 1 0 0 0
16 2017 .936122234710201 0 1 0 0 0
17 2013 .661188619179225 0 1 0 0 0
17 2016 .608865662202188 0 0 1 0 0
17 2017 .77149317636079 0 0 1 0 0
18 2013 .824611513115011 0 0 1 0 0
18 2016 .960324172316378 0 1 0 0 0
18 2017 .975401108784843 0 1 0 0 0
19 2013 .963429261285566 0 1 0 0 0
19 2016 .669946323029468 0 1 0 0 0
19 2017 .981601192052231 0 1 0 0 0
19 2018 .916651291903188 0 1 0 0 0
20 2013 .617431302902067 0 0 1 0 0
20 2014 .865348404880229 0 0 1 0 0
20 2015 .652834671144123 0 0 1 0 0
20 2016 .746964385643763 0 0 1 0 0
20 2017 .897693217361013 0 0 1 0 0
20 2018 .907410006573264 0 0 1 0 0
21 2013 .821333099939362 0 1 0 0 0
21 2014 .77980031057586 0 1 0 0 0
21 2015 .685685648519337 0 1 0 0 0
21 2016 .815044695863181 0 1 0 0 0
21 2017 .822747634428948 0 1 0 0 0
21 2018 .878671094308265 0 1 0 0 0
22 2013 .823898797125514 0 1 0 0 0
22 2014 .762768880702798 1 0 0 0 0
22 2015 .807446721174141 1 0 0 0 0
22 2016 .925791790558292 0 1 0 0 0
22 2017 1.09338805847993 0 1 0 0 0
22 2018 .836051418235281 0 1 0 0 0
23 2013 1.01023987403303 0 0 0 1 0
23 2014 1.01177052424583 0 0 0 1 0
23 2015 .997455597264312 0 0 0 1 0
23 2016 1.00808856535401 0 0 0 1 0
23 2017 1.0017251902628 0 0 0 1 0
23 2018 1.00128354833426 0 0 0 1 0
24 2013 1.1953595253649 0 1 0 0 0
24 2014 1.15097799734811 0 1 0 0 0
24 2015 .800019319800766 0 1 0 0 0
24 2016 .850393681631707 0 1 0 0 0
24 2017 .809949278887908 0 1 0 0 0
24 2018 .79576330040545 0 0 1 0 0
25 2013 .998861294517819 0 0 0 0 1
25 2014 1.00322916778966 0 0 0 0 1
25 2015 1.01742782147918 0 0 0 0 1
25 2016 1.01443545465809 0 0 0 0 1
25 2017 .999163528767699 0 0 0 0 1
25 2018 1.0005439715517 0 0 0 0 1
26 2013 .74599112388065 0 0 1 0 0
26 2014 .972970532939351 0 0 1 0 0
26 2015 .856772579862182 0 0 1 0 0
26 2016 .755858231589364 0 0 1 0 0
26 2017 .874836825935082 0 0 1 0 0
26 2018 .804954898326352 0 0 1 0 0
27 2013 .872377031289671 1 0 0 0 0
27 2014 .828775616984605 1 0 0 0 0
27 2015 .821585302400639 1 0 0 0 0
27 2016 .843467317012207 1 0 0 0 0
27 2017 1.12746114546205 1 0 0 0 0
27 2018 .990589835281587 1 0 0 0 0
28 2014 .868210895148766 1 0 0 0 0
28 2015 .90256083335277 1 0 0 0 0
28 2016 .862855792661279 1 0 0 0 0
28 2017 .83535845507259 1 0 0 0 0
28 2018 .890716842684073 1 0 0 0 0
29 2013 1.00365765400966 0 0 0 0 1
29 2014 1.00527069737532 0 0 0 0 1
29 2015 .68452074422836 0 0 0 0 1
29 2016 1.01027988856022 0 0 0 0 1
29 2017 1.00480849903707 0 0 0 0 1
29 2018 1.00246903696495 0 0 0 0 1
30 2013 1.00820626082979 0 0 0 0 1
30 2014 1.0053051023066 0 0 0 0 1
30 2015 .994141019029613 0 0 0 0 1
30 2016 1.00594083430092 0 0 0 0 1
30 2017 1.0077989357137 0 0 0 0 1
30 2018 1.00253904258351 0 0 0 0 1
31 2013 .874259507618924 0 1 0 0 0
31 2014 .741145746076467 0 1 0 0 0
31 2015 .915046111219228 0 1 0 0 0
31 2016 .869798538660265 0 1 0 0 0
31 2017 .895002338464555 0 1 0 0 0
31 2018 .897783918070956 0 1 0 0 0
32 2013 .745900428963911 0 1 0 0 0
32 2014 .793275960922672 0 1 0 0 0
32 2015 .704090638394304 0 1 0 0 0
32 2016 .964315254662664 0 1 0 0 0
32 2017 1.0501203305441 0 1 0 0 0
32 2018 .849428083728962 0 1 0 0 0
33 2013 .731793867991541 0 1 0 0 0
33 2014 .775291378137415 0 1 0 0 0
33 2015 .725046899035517 0 1 0 0 0
33 2016 .827136645072161 0 1 0 0 0
33 2017 1.03191209259331 0 1 0 0 0
33 2018 1.01156971872729 0 1 0 0 0
34 2013 .655426392172633 0 1 0 0 0
34 2014 .707303107365933 0 0 1 0 0
34 2015 .629544822346522 0 0 1 0 0
34 2016 .694492952200205 0 0 1 0 0
34 2017 .774490992882669 0 0 1 0 0
34 2018 .805215904293702 0 1 0 0 0
35 2013 .800506868860913 0 0 1 0 0
35 2014 .735245636447527 0 0 1 0 0
35 2015 .695597133468844 0 0 1 0 0
35 2016 1.06232956762066 0 1 0 0 0
35 2017 1.04729674435708 0 1 0 0 0
35 2018 .938723992119474 0 1 0 0 0
36 2013 .998626448633042 0 1 0 0 0
36 2014 1.07596807658794 0 1 0 0 0
36 2015 .948821853572457 0 1 0 0 0
36 2016 .90755588440115 0 1 0 0 0
36 2017 1.10011175774583 0 1 0 0 0
36 2018 .929368966046526 1 0 0 0 0
37 2014 .848085950397277 0 0 1 0 0
37 2015 .653950215155547 0 0 1 0 0
38 2013 .561230759192109 0 0 1 0 0
38 2014 .834652441515534 0 0 1 0 0
38 2015 .642362444919761 0 0 1 0 0
38 2016 .752483111759566 0 0 1 0 0
38 2017 .88806231557079 0 0 1 0 0
38 2018 .911632591418046 0 0 1 0 0
39 2014 .850600419661776 0 0 1 0 0
39 2015 .651751096999206 0 0 1 0 0
39 2016 .7377143999728 0 0 1 0 0
39 2017 .888750435305572 0 0 1 0 0
39 2018 .888077859878939 0 0 1 0 0
40 2018 .890481290028506 0 0 1 0 0
41 2013 .823592645475833 0 1 0 0 0
41 2014 .826261997071275 0 1 0 0 0
41 2015 .668232278329096 0 1 0 0 0
41 2016 .845753844963655 0 1 0 0 0
41 2017 .813003610656727 0 1 0 0 0
41 2018 .897283682838319 0 1 0 0 0
42 2014 .816426268359961 0 1 0 0 0
42 2015 .723597760584749 0 1 0 0 0
42 2016 .799595798642026 0 1 0 0 0
42 2017 .794947250142972 0 1 0 0 0
42 2018 .857658319963051 0 1 0 0 0
43 2018 .87613556837118 0 1 0 0 0
44 2014 .790039770789938 0 1 0 0 0
44 2015 .682547999322293 0 1 0 0 0
45 2014 1.01198878208944 0 0 0 1 0
45 2015 .995646173930971 0 0 0 1 0
46 2014 1.07628685532869 0 1 0 0 0
46 2015 .785339139732285 0 1 0 0 0
47 2014 1.00313696930831 0 0 0 0 1
47 2015 1.04190004953048 0 0 0 0 1
48 2014 .949524078705721 0 0 1 0 0
48 2015 .835180775700745 0 0 1 0 0
49 2013 .790239627777075 0 1 0 0 0
49 2014 .766589560038174 1 0 0 0 0
49 2015 .758384896241101 1 0 0 0 0
49 2016 .990826333211286 0 1 0 0 0
49 2017 1.12484032050099 0 1 0 0 0
49 2018 .85019880437723 0 1 0 0 0
50 2014 .773424179981518 1 0 0 0 0
50 2015 .794488616115139 1 0 0 0 0
50 2016 .872376034164794 0 1 0 0 0
50 2017 .90088286355704 0 1 0 0 0
50 2018 .822654570288226 0 1 0 0 0
51 2014 1.00636817199934 0 0 0 0 1
51 2015 .685431717659472 0 0 0 0 1
52 2014 1.00357151012239 0 0 0 0 1
52 2015 .993967235831946 0 0 0 0 1
53 2014 .756706938197038 0 1 0 0 0
53 2015 .850270943649216 0 1 0 0 0
54 2014 .795997585364037 0 1 0 0 0
54 2015 .700540139560121 0 1 0 0 0
55 2014 .783485803567604 0 1 0 0 0
55 2015 .717725945061923 0 1 0 0 0
56 2014 .718667417012273 0 0 1 0 0
56 2015 .633100517821069 0 0 1 0 0
57 2014 .746030833528517 0 0 1 0 0
57 2015 .693214642815093 0 0 1 0 0
58 2014 .95170552662284 0 1 0 0 0
58 2015 .860442099295744 0 1 0 0 0
58 2018 .843794687653025 0 1 0 0 0
59 2013 .507461857040183 0 0 1 0 0
59 2014 .689076355733308 0 1 0 0 0
59 2015 .66542867744904 0 1 0 0 0
59 2016 .719690509900005 0 0 1 0 0
59 2017 .846347936235336 0 0 1 0 0
59 2018 .848310795856833 0 0 1 0 0
60 2014 .693046037742623 0 1 0 0 0
60 2015 .665935995251275 0 1 0 0 0
61 2013 .495344780002533 0 0 1 0 0
61 2014 .695121097592318 0 1 0 0 0
61 2015 .648691772669296 0 1 0 0 0
61 2016 .726799463742965 0 0 1 0 0
61 2017 .836274913447111 0 0 1 0 0
61 2018 .852421783777509 0 0 1 0 0
62 2014 .701618551707719 0 1 0 0 0
62 2015 .663948143585693 0 1 0 0 0
62 2016 .698175403321424 0 0 1 0 0
62 2017 .787243314410004 0 0 1 0 0
62 2018 .827245888947383 0 0 1 0 0
63 2018 .81384489311509 0 0 1 0 0
64 2013 .999527581638741 0 0 0 1 0
64 2014 1.00308724647226 0 0 0 1 0
64 2015 .996125013688963 0 0 0 1 0
64 2016 1.00449389331438 0 0 0 1 0
64 2017 1.00142833633689 0 0 0 1 0
64 2018 1.00194064734055 0 0 0 1 0
65 2014 1.00653133952778 0 0 0 1 0
65 2015 .997593306873446 0 0 0 1 0
65 2016 1.01014048047577 0 0 0 1 0
65 2017 .997557557711069 0 0 0 1 0
65 2018 .99790301070223 0 0 0 1 0
66 2018 .997628282585933 0 0 0 1 0
67 2013 1.00178370403831 0 1 0 0 0
67 2014 1.08295116590487 0 1 0 0 0
67 2015 .786688356872545 0 1 0 0 0
67 2016 .912601816033725 0 1 0 0 0
67 2017 .833251032423064 0 1 0 0 0
67 2018 .81077501669681 0 0 1 0 0
68 2014 1.09486153523063 0 1 0 0 0
68 2015 .798533786960969 0 1 0 0 0
68 2016 .772315560465218 0 1 0 0 0
68 2017 .776301229797025 0 1 0 0 0
68 2018 .787137598643581 0 0 1 0 0
69 2018 .805332536796421 0 0 1 0 0
70 2013 .705060394506419 0 0 1 0 0
70 2014 .947038585836659 0 0 1 0 0
70 2015 .839637060997018 0 0 1 0 0
70 2016 .748020703149136 0 0 1 0 0
70 2017 .86351961479889 0 0 1 0 0
70 2018 .810077981456419 0 0 1 0 0
71 2014 .96205789088935 0 0 1 0 0
71 2015 .854231973865823 0 0 1 0 0
71 2016 .757650672579766 0 0 1 0 0
71 2017 .866166486533626 0 0 1 0 0
71 2018 .800687798424529 0 0 1 0 0
72 2018 .812327690300424 0 0 1 0 0
73 2013 .999236941296528 0 0 0 0 1
73 2014 1.00008471769581 0 0 0 0 1
73 2015 1.00533354220501 0 0 0 0 1
73 2016 1.00465406624276 0 0 0 0 1
73 2017 .998803382142574 0 0 0 0 1
73 2018 1.0008160022604 0 0 0 0 1
74 2014 .838333247189458 1 0 0 0 0
74 2015 .797384527090634 1 0 0 0 0
74 2016 .866122014140372 1 0 0 0 0
74 2017 .812729826988652 1 0 0 0 0
74 2018 .921183127431588 1 0 0 0 0
75 2013 1.00022156636337 0 0 0 0 1
75 2014 1.0025251893623 0 0 0 0 1
75 2015 .684149674258469 0 0 0 0 1
75 2016 1.00662737041366 0 0 0 0 1
75 2017 1.00415642126988 0 0 0 0 1
75 2018 1.00608219381176 0 0 0 0 1
76 2013 1.0008844151132 0 0 0 0 1
76 2014 1.00298690129537 0 0 0 0 1
76 2015 .99351638963282 0 0 0 0 1
76 2016 1.00887147697594 0 0 0 0 1
76 2017 1.00934463781269 0 0 0 0 1
76 2018 1.00793717799401 0 0 0 0 1
77 2013 .888238063209464 0 1 0 0 0
77 2014 .769724101920054 0 1 0 0 0
77 2015 .868519716664263 0 1 0 0 0
77 2016 .908169550277449 0 1 0 0 0
77 2017 .893462899018995 0 1 0 0 0
77 2018 .909842722904168 0 1 0 0 0
78 2013 .744372572968128 0 1 0 0 0
78 2014 .808394814166204 0 1 0 0 0
78 2015 .692380446735415 0 1 0 0 0
78 2016 .991337182741236 0 1 0 0 0
78 2017 1.04144588615624 0 1 0 0 0
78 2018 .854701919148856 0 1 0 0 0
79 2013 .733938493930329 0 1 0 0 0
79 2014 .802943879768304 0 1 0 0 0
79 2015 .70422828238686 0 1 0 0 0
79 2016 .879311708466522 0 1 0 0 0
79 2017 1.04907005439684 0 1 0 0 0
79 2018 1.07932830736751 0 1 0 0 0
80 2013 .644595023642175 0 1 0 0 0
80 2014 .716569104320372 0 0 1 0 0
80 2015 .613742924414788 0 0 1 0 0
80 2016 .699457360166343 0 0 1 0 0
80 2017 .767249087995638 0 0 1 0 0
80 2018 .812656594462775 0 1 0 0 0
81 2013 .793108087553475 0 0 1 0 0
81 2014 .747032855382601 0 0 1 0 0
81 2015 .680575801698133 0 0 1 0 0
81 2016 1.11095060194745 0 1 0 0 0
81 2017 1.0557768211971 0 1 0 0 0
81 2018 .95048724245358 0 1 0 0 0
82 2013 .89432749424127 0 1 0 0 0
82 2014 .938535548957794 0 1 0 0 0
82 2015 .886642596150443 0 1 0 0 0
82 2016 .914114913296002 0 1 0 0 0
82 2017 1.09621856487302 0 1 0 0 0
82 2018 .95524374141286 1 0 0 0 0
83 2014 1.00149951500817 0 0 0 0 1
83 2015 1.02917692036099 0 0 0 0 1
83 2016 1.02524739779276 0 0 0 0 1
83 2017 1.00039184917885 0 0 0 0 1
83 2018 1.01394329547033 0 0 0 0 1
84 2014 1.00317304400767 0 0 0 0 1
84 2015 .684975723176103 0 0 0 0 1
84 2016 1.01043818444525 0 0 0 0 1
84 2017 .99912862484701 0 0 0 0 1
84 2018 .998117166055297 0 0 0 0 1
85 2014 1.00325499898932 0 0 0 0 1
85 2015 .995799285494149 0 0 0 0 1
85 2016 .999364651576083 0 0 0 0 1
85 2017 .99622199449035 0 0 0 0 1
85 2018 .994483616183732 0 0 0 0 1
86 2014 .762957154877795 0 1 0 0 0
86 2015 .911997594482994 0 1 0 0 0
86 2016 .815091032575269 0 1 0 0 0
86 2017 .846514859536535 0 1 0 0 0
86 2018 .861946090660751 0 1 0 0 0
87 2014 .805447531278274 0 1 0 0 0
87 2015 .717372611340781 0 1 0 0 0
87 2016 .926288845525146 0 1 0 0 0
87 2017 .977215337946144 0 1 0 0 0
87 2018 .823284947077465 0 1 0 0 0
88 2014 .797363185580372 0 1 0 0 0
88 2015 .722877199080863 0 1 0 0 0
88 2016 .772820725985417 0 1 0 0 0
88 2017 .859802609280943 0 1 0 0 0
88 2018 .960820310106187 0 1 0 0 0
89 2014 .714804103344368 0 0 1 0 0
89 2015 .628162979689326 0 0 1 0 0
89 2016 .675960847350546 0 0 1 0 0
89 2017 .756676608490939 0 0 1 0 0
89 2018 .799202427656622 0 1 0 0 0
90 2014 .744761634018549 0 0 1 0 0
90 2015 .694030911099388 0 0 1 0 0
90 2016 .998365834895388 0 1 0 0 0
90 2017 .933983928062037 0 1 0 0 0
90 2018 .921574319676244 0 1 0 0 0
91 2014 1.02671667273211 0 1 0 0 0
91 2015 .946806361311953 0 1 0 0 0
91 2016 .936558122922356 0 1 0 0 0
91 2017 .994098924275925 0 1 0 0 0
91 2018 .94797633706332 1 0 0 0 0
92 2018 .879264752505371 0 1 0 0 0
93 2018 .807398957149527 0 1 0 0 0
94 2018 .96599475423178 0 1 0 0 0
95 2018 .815118838213486 0 1 0 0 0
96 2018 .929114232864422 0 1 0 0 0
97 2018 1.01839896797375 0 0 0 0 1
98 2018 .997874655207802 0 0 0 0 1
99 2018 .994698657753633 0 0 0 0 1
Any Ideas on what the problem is?

Thank you in Advance

Haben Mehari