Hi all,

I am working on a system-GMM and the model does not include the lagged dependent variable. So the model is not dynamic. I went through the previous posts about this issue and found out that xtabond2 command is still applicable to use for static models. However, the output clearly suggests that the model suffers from second-order serial correlation. I know this could be overcome by including further lags of dependent variable but I am not sure if it is an appropriate solution to apply in my case. How should I proceed with the significant AR(2)? Is there any other command I can use?

Here is the output:

Code:
xtabond2 wndf winv wdiv wcf wmtb wsize wprof war wol  wtang s2-s6 y3-y32, gmm(winv wdiv, lag(2 5) collaps
> e) iv(wmtb wsize wcf wprof war wol  wtang s2-s6 y3-y32, eq(level)) iv(wmtb wsize wprof wcf war wol  wtang
> , passthru eq(diff)) robust twostep small
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.

Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: companyno                       Number of obs      =      5624
Time variable : datayearfi~l                    Number of groups   =       499
Number of instruments = 60                      Obs per group: min =         1
F(44, 498)    =      6.75                                      avg =     11.27
Prob > F      =     0.000                                      max =        31
------------------------------------------------------------------------------
             |              Corrected
        wndf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        winv |   .4376419    .103269     4.24   0.000     .2347452    .6405386
        wdiv |  -.0477658   .3213661    -0.15   0.882    -.6791663    .5836346
         wcf |   .0211632   .0328962     0.64   0.520    -.0434691    .0857956
        wmtb |  -.0085436   .0096806    -0.88   0.378    -.0275634    .0104762
       wsize |   .0004914   .0073699     0.07   0.947    -.0139885    .0149714
       wprof |  -.1751627   .0922974    -1.90   0.058    -.3565029    .0061776
         war |  -.1093765   .0432954    -2.53   0.012    -.1944407   -.0243124
         wol |  -.0650945   .0223084    -2.92   0.004    -.1089247   -.0212643
       wtang |  -.1478948    .065725    -2.25   0.025    -.2770273   -.0187623
          s2 |  -.0243968   .0470204    -0.52   0.604    -.1167797     .067986
          s3 |  -.0393369   .0453831    -0.87   0.386    -.1285028    .0498291
          s4 |  -.0525314    .046443    -1.13   0.259    -.1437797     .038717
          s5 |  -.0485714   .0463337    -1.05   0.295    -.1396051    .0424622
          s6 |  -.0351004   .0418741    -0.84   0.402    -.1173721    .0471712
          y3 |  -.1239323   .2230695    -0.56   0.579    -.5622058    .3143411
          y4 |  -.2066826   .1784896    -1.16   0.247    -.5573681    .1440029
          y5 |  -.3227292    .189028    -1.71   0.088    -.6941199    .0486616
          y6 |  -.2483116   .1836581    -1.35   0.177    -.6091519    .1125287
          y7 |  -.2241975   .1772996    -1.26   0.207     -.572545      .12415
          y8 |  -.2040736   .1738694    -1.17   0.241    -.5456815    .1375344
          y9 |  -.2188938   .1756301    -1.25   0.213    -.5639611    .1261735
         y10 |  -.2163903   .1771234    -1.22   0.222    -.5643915    .1316109
         y11 |   -.219408   .1717107    -1.28   0.202    -.5567747    .1179586
         y12 |  -.1423305   .1738751    -0.82   0.413    -.4839497    .1992886
         y13 |  -.1968947    .179804    -1.10   0.274    -.5501627    .1563733
         y14 |  -.2050162   .1794417    -1.14   0.254    -.5575722    .1475399
         y15 |  -.2253615   .1717706    -1.31   0.190     -.562846     .112123
         y16 |  -.1961101   .1708418    -1.15   0.252    -.5317697    .1395495
         y17 |  -.2522972   .1740632    -1.45   0.148    -.5942858    .0896915
         y18 |  -.1930099   .1733364    -1.11   0.266    -.5335706    .1475509
         y19 |   -.185219   .1719629    -1.08   0.282    -.5230813    .1526432
         y20 |  -.1883695   .1683058    -1.12   0.264    -.5190465    .1423075
         y21 |   -.174492   .1676107    -1.04   0.298    -.5038033    .1548194
         y22 |  -.1721506   .1680627    -1.02   0.306    -.5023499    .1580486
         y23 |  -.1901924   .1768949    -1.08   0.283    -.5377448      .15736
         y24 |  -.1573063   .1717939    -0.92   0.360    -.4948364    .1802239
         y25 |  -.1784788   .1726957    -1.03   0.302    -.5177806    .1608231
         y26 |  -.2031764   .1739672    -1.17   0.243    -.5449765    .1386237
         y27 |  -.1855392   .1706326    -1.09   0.277    -.5207877    .1497093
         y28 |  -.1882344     .17348    -1.09   0.278    -.5290773    .1526086
         y29 |    -.20306   .1754951    -1.16   0.248     -.547862    .1417421
         y30 |  -.2185134   .1758265    -1.24   0.215    -.5639665    .1269397
         y31 |   -.244247   .1723092    -1.42   0.157    -.5827896    .0942957
         y32 |  -.2281682   .1765915    -1.29   0.197    -.5751244     .118788
       _cons |   .4011934   .2501861     1.60   0.109    -.0903571    .8927439
------------------------------------------------------------------------------
Instruments for first differences equation
  Standard
    wmtb wsize wprof wcf war wol wtang
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(2/5).(winv wdiv) collapsed
Instruments for levels equation
  Standard
    _cons
    wmtb wsize wcf wprof war wol wtang s2 s3 s4 s5 s6 y3 y4 y5 y6 y7 y8 y9 y10
    y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 y27 y28
    y29 y30 y31 y32
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL.(winv wdiv) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z =  -4.75  Pr > z =  0.000
Arellano-Bond test for AR(2) in first differences: z =   1.72  Pr > z =  0.086
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(15)   =  28.72  Prob > chi2 =  0.017
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(15)   =  11.18  Prob > chi2 =  0.740
  (Robust, but can be weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(13)   =  10.18  Prob > chi2 =  0.679
    Difference (null H = exogenous): chi2(2)    =   0.99  Prob > chi2 =  0.608
  gmm(winv wdiv, collapse lag(2 5))
    Hansen test excluding group:     chi2(5)    =   3.58  Prob > chi2 =  0.611
    Difference (null H = exogenous): chi2(10)   =   7.59  Prob > chi2 =  0.669
  iv(wmtb wsize wprof wcf war wol wtang, passthru eq(diff))
    Hansen test excluding group:     chi2(8)    =   4.93  Prob > chi2 =  0.765
    Difference (null H = exogenous): chi2(7)    =   6.25  Prob > chi2 =  0.511