I am working on a system-GMM and the model does not include the lagged dependent variable. So the model is not dynamic. I went through the previous posts about this issue and found out that xtabond2 command is still applicable to use for static models. However, the output clearly suggests that the model suffers from second-order serial correlation. I know this could be overcome by including further lags of dependent variable but I am not sure if it is an appropriate solution to apply in my case. How should I proceed with the significant AR(2)? Is there any other command I can use?
Here is the output:
Code:
xtabond2 wndf winv wdiv wcf wmtb wsize wprof war wol wtang s2-s6 y3-y32, gmm(winv wdiv, lag(2 5) collaps > e) iv(wmtb wsize wcf wprof war wol wtang s2-s6 y3-y32, eq(level)) iv(wmtb wsize wprof wcf war wol wtang > , passthru eq(diff)) robust twostep small Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: companyno Number of obs = 5624 Time variable : datayearfi~l Number of groups = 499 Number of instruments = 60 Obs per group: min = 1 F(44, 498) = 6.75 avg = 11.27 Prob > F = 0.000 max = 31 ------------------------------------------------------------------------------ | Corrected wndf | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- winv | .4376419 .103269 4.24 0.000 .2347452 .6405386 wdiv | -.0477658 .3213661 -0.15 0.882 -.6791663 .5836346 wcf | .0211632 .0328962 0.64 0.520 -.0434691 .0857956 wmtb | -.0085436 .0096806 -0.88 0.378 -.0275634 .0104762 wsize | .0004914 .0073699 0.07 0.947 -.0139885 .0149714 wprof | -.1751627 .0922974 -1.90 0.058 -.3565029 .0061776 war | -.1093765 .0432954 -2.53 0.012 -.1944407 -.0243124 wol | -.0650945 .0223084 -2.92 0.004 -.1089247 -.0212643 wtang | -.1478948 .065725 -2.25 0.025 -.2770273 -.0187623 s2 | -.0243968 .0470204 -0.52 0.604 -.1167797 .067986 s3 | -.0393369 .0453831 -0.87 0.386 -.1285028 .0498291 s4 | -.0525314 .046443 -1.13 0.259 -.1437797 .038717 s5 | -.0485714 .0463337 -1.05 0.295 -.1396051 .0424622 s6 | -.0351004 .0418741 -0.84 0.402 -.1173721 .0471712 y3 | -.1239323 .2230695 -0.56 0.579 -.5622058 .3143411 y4 | -.2066826 .1784896 -1.16 0.247 -.5573681 .1440029 y5 | -.3227292 .189028 -1.71 0.088 -.6941199 .0486616 y6 | -.2483116 .1836581 -1.35 0.177 -.6091519 .1125287 y7 | -.2241975 .1772996 -1.26 0.207 -.572545 .12415 y8 | -.2040736 .1738694 -1.17 0.241 -.5456815 .1375344 y9 | -.2188938 .1756301 -1.25 0.213 -.5639611 .1261735 y10 | -.2163903 .1771234 -1.22 0.222 -.5643915 .1316109 y11 | -.219408 .1717107 -1.28 0.202 -.5567747 .1179586 y12 | -.1423305 .1738751 -0.82 0.413 -.4839497 .1992886 y13 | -.1968947 .179804 -1.10 0.274 -.5501627 .1563733 y14 | -.2050162 .1794417 -1.14 0.254 -.5575722 .1475399 y15 | -.2253615 .1717706 -1.31 0.190 -.562846 .112123 y16 | -.1961101 .1708418 -1.15 0.252 -.5317697 .1395495 y17 | -.2522972 .1740632 -1.45 0.148 -.5942858 .0896915 y18 | -.1930099 .1733364 -1.11 0.266 -.5335706 .1475509 y19 | -.185219 .1719629 -1.08 0.282 -.5230813 .1526432 y20 | -.1883695 .1683058 -1.12 0.264 -.5190465 .1423075 y21 | -.174492 .1676107 -1.04 0.298 -.5038033 .1548194 y22 | -.1721506 .1680627 -1.02 0.306 -.5023499 .1580486 y23 | -.1901924 .1768949 -1.08 0.283 -.5377448 .15736 y24 | -.1573063 .1717939 -0.92 0.360 -.4948364 .1802239 y25 | -.1784788 .1726957 -1.03 0.302 -.5177806 .1608231 y26 | -.2031764 .1739672 -1.17 0.243 -.5449765 .1386237 y27 | -.1855392 .1706326 -1.09 0.277 -.5207877 .1497093 y28 | -.1882344 .17348 -1.09 0.278 -.5290773 .1526086 y29 | -.20306 .1754951 -1.16 0.248 -.547862 .1417421 y30 | -.2185134 .1758265 -1.24 0.215 -.5639665 .1269397 y31 | -.244247 .1723092 -1.42 0.157 -.5827896 .0942957 y32 | -.2281682 .1765915 -1.29 0.197 -.5751244 .118788 _cons | .4011934 .2501861 1.60 0.109 -.0903571 .8927439 ------------------------------------------------------------------------------ Instruments for first differences equation Standard wmtb wsize wprof wcf war wol wtang GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/5).(winv wdiv) collapsed Instruments for levels equation Standard _cons wmtb wsize wcf wprof war wol wtang s2 s3 s4 s5 s6 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 y27 y28 y29 y30 y31 y32 GMM-type (missing=0, separate instruments for each period unless collapsed) DL.(winv wdiv) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -4.75 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = 1.72 Pr > z = 0.086 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(15) = 28.72 Prob > chi2 = 0.017 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(15) = 11.18 Prob > chi2 = 0.740 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(13) = 10.18 Prob > chi2 = 0.679 Difference (null H = exogenous): chi2(2) = 0.99 Prob > chi2 = 0.608 gmm(winv wdiv, collapse lag(2 5)) Hansen test excluding group: chi2(5) = 3.58 Prob > chi2 = 0.611 Difference (null H = exogenous): chi2(10) = 7.59 Prob > chi2 = 0.669 iv(wmtb wsize wprof wcf war wol wtang, passthru eq(diff)) Hansen test excluding group: chi2(8) = 4.93 Prob > chi2 = 0.765 Difference (null H = exogenous): chi2(7) = 6.25 Prob > chi2 = 0.511
0 Response to Significant AR(2) in System-GMM where the model does not include the lagged DV
Post a Comment