I have been trying to replicate Stewart, M.B., 2004. Semi-nonparametric estimation of extended ordered probit models. The Stata Journal, 4(1), pp.27-39 in the matter of high school truancy.
I would like to plot the density graph for the sneop estimation but I wasn't able to do it.
This is my code:
Code:
status - primary dataset * (1) stopped to go to school before each school year end ("abandoned"); Chronic Absenteeism * (2) attend school until the school year end, but did not complete the grade due to poor performance "repeated); MEDIUM truancy * (3) advanced in studies ("approved"). Regular student * Generate truancy_status * generate truancy_status = word("low med high", status) * Identify quantity of pupils per status and its mean nottendence by cohort - I did it in separate dataset. * egen mean = mean(noatte), by (status c) * sort c * by c: tab mean status * geberate dummy stu_staff_ratio sort school t by school t: egen total_stu=count(i) gen stu_staff_ratio = total_stu/staff oprobit status boy age govaid night urb lib sci comp sports tage tagesd twom stu_staff_ratio noatte sroom chil element ********************** Semi Nonparametric Models ********************************************************************************8 sneop status boy age govaid lib sci comp sports tage tagesd twom stu_staff_ratio noatte sroom chil element, order(3) sneop status boy age govaid lib sci comp sports tage tagesd twom stu_staff_ratio noatte sroom chil element, dplot(gr)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input byte(status boy) float age byte govaid double(lib sci comp sports tage tagesd twom) float(stu_staff_ratio noatte) double(sroom child element) 3 1 15.3 0 1 1 1 0 43.54 10.11 81.08 .8372093 36 18 1 1 2 1 16.1 0 1 1 1 0 43.54 10.11 81.08 .8372093 77 25 1 1 3 1 16.1 0 1 1 1 0 43.54 10.11 81.08 .8372093 39 18 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 30 25 1 1 2 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 142 25 1 1 2 0 16.1 0 1 1 1 0 43.54 10.11 81.08 .8372093 164 18 1 1 3 1 15.5 0 1 1 1 0 43.54 10.11 81.08 .8372093 88 25 1 1 3 1 15.1 0 1 1 1 0 43.54 10.11 81.08 .8372093 17 25 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 35 18 1 1 3 1 16.3 0 1 1 1 0 43.54 10.11 81.08 .8372093 85 25 1 1 3 1 15.3 0 1 1 1 0 43.54 10.11 81.08 .8372093 30 18 1 1 2 1 16.3 0 1 1 1 0 43.54 10.11 81.08 .8372093 93 18 1 1 3 1 15.8 0 1 1 1 0 43.54 10.11 81.08 .8372093 15 25 1 1 3 0 14.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 23 25 1 1 2 0 16.7 0 1 1 1 0 43.54 10.11 81.08 .8372093 58 25 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 57 25 1 1 3 1 15.3 0 1 1 1 0 43.54 10.11 81.08 .8372093 65 18 1 1 2 1 16 0 1 1 1 0 43.54 10.11 81.08 .8372093 177 25 1 1 3 0 15.2 0 1 1 1 0 43.54 10.11 81.08 .8372093 20 25 1 1 2 0 17.5 0 1 1 1 0 43.54 10.11 81.08 .8372093 203 25 1 1 2 1 15.6 0 1 1 1 0 43.54 10.11 81.08 .8372093 92 25 1 1 3 0 15.2 0 1 1 1 0 43.54 10.11 81.08 .8372093 60 18 1 1 3 0 15.8 0 1 1 1 0 43.54 10.11 81.08 .8372093 16 18 1 1 2 0 17.6 0 1 1 1 0 43.54 10.11 81.08 .8372093 72 25 1 1 2 0 15.8 0 1 1 1 0 43.54 10.11 81.08 .8372093 63 25 1 1 2 1 17 0 1 1 1 0 43.54 10.11 81.08 .8372093 185 25 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 52 18 1 1 3 0 15.7 0 1 1 1 0 43.54 10.11 81.08 .8372093 44 18 1 1 2 1 15.4 0 1 1 1 0 43.54 10.11 81.08 .8372093 87 18 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 .8372093 54 25 1 1 1 1 16.4 0 1 1 1 0 43.54 10.11 81.08 .8372093 . 18 1 1 3 0 15.5 0 1 1 1 0 43.54 10.11 81.08 .8372093 55 25 1 1 3 0 15.8 0 1 1 1 0 43.54 10.11 81.08 .8372093 76 18 1 1 3 0 16.7 0 1 1 1 0 43.54 10.11 81.08 .8372093 65 25 1 1 2 1 16.6 0 1 1 1 0 43.54 10.11 81.08 .8372093 51 18 1 1 2 1 17.1 0 1 1 1 0 43.54 10.11 81.08 .8372093 146 25 1 1 3 0 16.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 85 14 1 1 3 0 16.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 128 31 1 1 3 1 16.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 27 17 1 1 3 1 15.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 32 14 1 1 3 1 16.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 104 31 1 1 3 0 14.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 32 3 1 1 3 1 17.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 36 14 1 1 3 0 15.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 38 31 1 1 3 1 15.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 89 17 1 1 3 1 16.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 36 31 1 1 3 1 16.3 0 1 1 1 0 43.54 10.11 81.08 1.767442 66 31 1 1 3 0 17.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 63 31 1 1 3 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 82 19 1 1 3 0 16.1 0 1 1 1 0 43.54 10.11 81.08 1.767442 57 31 1 1 3 1 16.1 0 1 1 1 0 43.54 10.11 81.08 1.767442 15 19 1 1 3 0 15.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 61 31 1 1 3 1 15.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 56 31 1 1 3 0 15.2 0 1 1 1 0 43.54 10.11 81.08 1.767442 40 14 1 1 3 1 16.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 25 17 1 1 2 1 18.1 0 1 1 1 0 43.54 10.11 81.08 1.767442 78 31 1 1 3 0 15.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 68 31 1 1 3 1 20.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 45 14 1 1 3 0 16.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 34 19 1 1 2 0 16.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 101 31 1 1 3 1 15 0 1 1 1 0 43.54 10.11 81.08 1.767442 65 31 1 1 3 0 17.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 57 19 1 1 3 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 78 19 1 1 2 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 168 31 1 1 3 1 15.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 24 14 1 1 3 0 15.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 69 14 1 1 3 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 27 19 1 1 3 1 16.3 0 1 1 1 0 43.54 10.11 81.08 1.767442 86 19 1 1 3 1 15.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 65 31 1 1 3 0 16.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 22 17 1 1 3 0 20.1 0 1 1 1 0 43.54 10.11 81.08 1.767442 60 17 1 1 3 1 17.3 0 1 1 1 0 43.54 10.11 81.08 1.767442 24 17 1 1 3 1 15.7 0 1 1 1 0 43.54 10.11 81.08 1.767442 90 31 1 1 2 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 67 31 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 84 31 1 1 3 1 16.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 68 19 1 1 3 0 14.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 36 14 1 1 3 1 16.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 44 31 1 1 3 0 18.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 79 31 1 1 3 1 16.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 62 3 1 1 3 1 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 8 3 1 1 2 0 18.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 118 31 1 1 2 1 18 0 1 1 1 0 43.54 10.11 81.08 1.767442 137 31 1 1 3 0 15.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 26 17 1 1 3 0 17.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 63 31 1 1 3 0 16.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 40 17 1 1 3 0 16.3 0 1 1 1 0 43.54 10.11 81.08 1.767442 45 31 1 1 3 0 16.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 46 19 1 1 3 1 16 0 1 1 1 0 43.54 10.11 81.08 1.767442 97 17 1 1 3 0 15.2 0 1 1 1 0 43.54 10.11 81.08 1.767442 21 14 1 1 2 1 16.4 0 1 1 1 0 43.54 10.11 81.08 1.767442 175 31 1 1 3 0 14.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 81 31 1 1 3 0 15.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 18 19 1 1 3 0 16.2 0 1 1 1 0 43.54 10.11 81.08 1.767442 20 19 1 1 2 0 16.3 0 1 1 1 0 43.54 10.11 81.08 1.767442 138 31 1 1 3 0 16.8 0 1 1 1 0 43.54 10.11 81.08 1.767442 48 3 1 1 2 1 15.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 81 31 1 1 3 0 16.5 0 1 1 1 0 43.54 10.11 81.08 1.767442 69 19 1 1 3 1 15.9 0 1 1 1 0 43.54 10.11 81.08 1.767442 53 31 1 1 3 1 19.6 0 1 1 1 0 43.54 10.11 81.08 1.767442 52 14 1 1 end
Max
0 Response to Post estimation - dplot - sneop
Post a Comment