Hi friends,

I have income data for two populations (population id=1 and 2). I have collapsed my data into the form of cross-tabulation because in my research I assume all people in the same cell has exactly the same income. My original data is pasted at the end of this post. I want to calculate income share of each decile in each of the 2 populations separately. I have tried pshare (by Ben Jann) and sumdist (By Stephen Jenkins). Both can be installed by "ssc install ...". However, their estimates are slightly different. I was wondering if it is due to my incorrect usage of these commands?

For example, the income share of the top 10% in population with id=1 is 25.35% by pshare but 25.31 by sumdist. I also do not understand why there is an additional row with "." in the first column in the output of sumdist.

Thank you in advance!

Code:
. pshare estimate income [iw=freq], over(id) n(10) gini
(variance estimation not supported with iweights)

Percentile shares (proportion)    Number of obs   =         40

            1: id = 1
            2: id = 2

--------------------------------------------------------------
      income |      Coef.   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
1            |
        0-10 |   .0193008          .             .           .
       10-20 |    .034384          .             .           .
       20-30 |   .0535935          .             .           .
       30-40 |   .0679086          .             .           .
       40-50 |   .0808105          .             .           .
       50-60 |   .0935073          .             .           .
       60-70 |   .1067746          .             .           .
       70-80 |     .12858          .             .           .
       80-90 |   .1615961          .             .           .
      90-100 |   .2535447          .             .           .
-------------+------------------------------------------------
2            |
        0-10 |   .0844804          .             .           .
       10-20 |    .087861          .             .           .
       20-30 |   .0886734          .             .           .
       30-40 |   .0904544          .             .           .
       40-50 |   .0927363          .             .           .
       50-60 |   .0940319          .             .           .
       60-70 |   .0971719          .             .           .
       70-80 |   .1013188          .             .           .
       80-90 |   .1245144          .             .           .
      90-100 |   .1387574          .             .           .
--------------------------------------------------------------

-------------------------
             |      Gini
-------------+-----------
           1 |  .3525345
           2 |  .0837606
-------------------------



. sumdist income [aw=freq] if id==1, ngps(10)
Distributional summary statistics, 10 quantile groups

---------------------------------------------------------------------------
Quantile  |
group     |    Quantile  % of median     Share, %      L(p), %        GL(p)
----------+----------------------------------------------------------------
        1 |    15090.00        22.30         1.93         1.93      1510.64
        2 |    31181.00        46.07         3.44         5.38      4204.04
        3 |    44526.00        65.79         5.37        10.75      8401.91
        4 |    53645.00        79.27         6.78        17.52     13700.59
        5 |    67677.00       100.00         8.09        25.62     20027.01
        6 |    76289.00       112.73         9.36        34.98     27347.58
        7 |    85703.00       126.64        10.65        45.63     35676.55
        8 |   104176.00       153.93        12.87        58.51     45741.38
        9 |   131401.00       194.16        16.18        74.69     58393.76
       10 |                                 25.31       100.00     78183.37
        . |                                  0.00       100.00     78183.37
---------------------------------------------------------------------------

. sumdist income [aw=freq] if id==2, ngps(10)
Distributional summary statistics, 10 quantile groups

---------------------------------------------------------------------------
Quantile  |
group     |    Quantile  % of median     Share, %      L(p), %        GL(p)
----------+----------------------------------------------------------------
        1 |    66284.00        92.84        11.99        11.99      9144.18
        2 |    67528.00        94.59         7.39        19.37     14777.63
        3 |    67677.00        94.80         7.08        26.45     20178.05
        4 |    70314.00        98.49         8.77        35.22     26866.54
        5 |    71393.00       100.00        13.36        48.58     37056.61
        6 |    74037.00       103.70        10.45        59.03     45026.36
        7 |    74224.00       103.97         5.40        64.43     49145.43
        8 |    82858.00       116.06        11.07        75.50     57592.88
        9 |    97434.00       136.48        10.66        86.16     65721.22
       10 |                                 13.84       100.00     76281.04
        . |                                  0.00       100.00     76281.04
---------------------------------------------------------------------------
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float(income freq id)
 58340  46 2
 63079  35 2
 66056 132 2
 66284 175 2
 67528 230 2
 67677 220 2
 67773  88 2
 68921  79 2
 70314 100 2
 70686 196 2
 70696  56 2
 71393 144 2
 71651 123 2
 72303  11 2
 74037 167 2
 74224 153 2
 75841 188 2
 82858 109 2
 97434 230 2
105867 275 2
 15090 276 1
 17279   0 1
 24071 166 1
 29035   0 1
 31181 110 1
 32539   0 1
 34466   0 1
 38506   0 1
 38660 122 1
 39778   0 1
 39786   0 1
 40480   0 1
 44162   0 1
 44190   0 1
 44421   0 1
 44526 154 1
 45027   0 1
 47497   0 1
 47751   0 1
 48988   0 1
 50961   0 1
 51042   0 1
 51800  78 1
 51840   0 1
 51950   0 1
 52751   0 1
 53645 197 1
 53694   0 1
 55029   0 1
 57285   0 1
 57428   0 1
 57832   0 1
 58306   0 1
 58340   0 1
 59029   0 1
 59230   0 1
 59411  34 1
 59767   0 1
 62126   0 1
 62644   0 1
 63079   0 1
 63122   0 1
 63521 230 1
 66056   0 1
 66284   0 1
 67528   0 1
 67677  12 1
 67773   0 1
 68921   0 1
 70314   0 1
 70686   0 1
 70696   0 1
 71393   0 1
 71651   0 1
 72303 219 1
 74037   0 1
 74161   0 1
 74224   0 1
 75841   0 1
 76289  57 1
 76468   0 1
 78953   0 1
 79146   0 1
 81072   0 1
 81112   0 1
 82224 174 1
 82370   0 1
 82858   0 1
 83180   0 1
 83960   0 1
 85703 101 1
 86941   0 1
 88456   0 1
 88713   0 1
 91106   0 1
 91921   0 1
 93882   0 1
 96068   0 1
 96173   0 1
 96513 131 1
 97434   0 1
 98657   0 1
 98719   0 1
102264   0 1
104176 145 1
104184   0 1
104435   0 1
105847   0 1
105867   0 1
105867   0 1
111956   0 1
112972   0 1
115492  87 1
116767   0 1
118917   0 1
120198   0 1
121313   0 1
121679   0 1
122757   0 1
130627   0 1
131401 189 1
133087   0 1
134584   0 1
135674   0 1
144051   0 1
145649   0 1
147470   0 1
150625   0 1
159560  45 1
205999 230 1
 15090   0 2
 17279   0 2
 24071   0 2
 29035   0 2
 31181   0 2
 32539   0 2
 34466   0 2
 38506   0 2
 38660   0 2
 39778   0 2
 39786   0 2
 40480   0 2
 44162   0 2
 44190   0 2
 44421   0 2
 44526   0 2
 45027   0 2
 47497   0 2
 47751   0 2
 48988   0 2
 50961   0 2
 51042   0 2
 51800   0 2
 51840   0 2
 51950   0 2
 52751   0 2
 53645   0 2
 53694   0 2
 55029   0 2
 57285   0 2
 57428   0 2
 57832   0 2
 58306   0 2
 59029   0 2
 59230   0 2
 59411   0 2
 59767   0 2
 62126   0 2
 62644   0 2
 63122   0 2
 63521   0 2
 74161   0 2
 76289   0 2
 76468   0 2
 78953   0 2
 79146   0 2
 81072   0 2
 81112   0 2
 82224   0 2
 82370   0 2
 83180   0 2
 83960   0 2
 85703   0 2
 86941   0 2
 88456   0 2
 88713   0 2
 91106   0 2
 91921   0 2
 93882   0 2
 96068   0 2
 96173   0 2
 96513   0 2
 98657   0 2
 98719   0 2
102264   0 2
104176   0 2
104184   0 2
104435   0 2
105847   0 2
105867   0 2
111956   0 2
112972   0 2
115492   0 2
116767   0 2
118917   0 2
120198   0 2
121313   0 2
121679   0 2
122757   0 2
130627   0 2
131401   0 2
133087   0 2
134584   0 2
135674   0 2
144051   0 2
145649   0 2
147470   0 2
150625   0 2
159560   0 2
205999   0 2
end