Hi all,

I am fairly new to -xtabond2- command and I have some questions regarding the way for coding.

Here is what I typed:

Code:
xtabond2 winv L.winv wndf wdiv size wcf wmtb y2-y32, iv(size wmtb wcf y2-y32, eq(level)) gmm(L.winv, lag(2 4) eq(diff) collapse) gmm(L.winv, lag(2 4) eq(lev) collapse) gmm(wndf wdiv, lag(2 5) eq(diff) collapse) gmm(wndf wdiv, lag(2 5) eq(level) collapse) small robust twostep
* winv is my dependent variable
* I treat L.winv wndf and wdiv as endogenous
* size, wcf and wmtb are exogenous

Here is what Stata provides:

Code:
. xtabond2 winv L.winv wndf wdiv size wcf wmtb y2-y32, iv(size wmtb wcf y2-y32, eq(
> level)) gmm(L.winv, lag(2 4) eq(diff) collapse) gmm(L.winv, lag(2 4) eq(lev) coll
> apse) gmm(wndf wdiv, lag(2 5) eq(diff) collapse) gmm(wndf wdiv, lag(2 5) eq(level
> ) collapse) small robust twostep
Favoring space over speed. To switch, type or click on mata: mata set matafavor spe
> ed, perm.
y2 dropped due to collinearity
y32 dropped due to collinearity
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate optimal weighting matrix for two-step es
> timation.
  Difference-in-Sargan statistics may be negative.

Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: companyno                       Number of obs      =      5708
Time variable : datayearfi~l                    Number of groups   =       502
Number of instruments = 55                      Obs per group: min =         1
F(35, 501)    =      8.26                                      avg =     11.37
Prob > F      =     0.000                                      max =        30
------------------------------------------------------------------------------
             |              Corrected
        winv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        winv |
         L1. |   .0777343   .0238117     3.26   0.001     .0309512    .1245174
             |
        wndf |   .4706236   .2684656     1.75   0.080    -.0568335    .9980807
        wdiv |  -.4705155    .588355    -0.80   0.424    -1.626463    .6854316
        size |   .0157155   .0052187     3.01   0.003     .0054623    .0259687
         wcf |   .0939375   .0381943     2.46   0.014     .0188967    .1689783
        wmtb |    .040033   .0187122     2.14   0.033      .003269     .076797
          y3 |   .2321169   .1283572     1.81   0.071    -.0200678    .4843016
          y4 |   .0437833   .0727516     0.60   0.548    -.0991524    .1867191
          y5 |   .0310705   .0607181     0.51   0.609    -.0882229    .1503639
          y6 |   .0225263   .0550617     0.41   0.683     -.085654    .1307066
          y7 |   .0220792   .0305908     0.72   0.471    -.0380229    .0821812
          y8 |   .0462088   .0320417     1.44   0.150    -.0167438    .1091614
          y9 |   .0609806   .0341976     1.78   0.075    -.0062078     .128169
         y10 |    .062331   .0418511     1.49   0.137    -.0198942    .1445562
         y11 |   .0833537   .0610176     1.37   0.173    -.0365282    .2032357
         y12 |   .0185959   .0423988     0.44   0.661    -.0647054    .1018972
         y13 |  -.0718608   .0371793    -1.93   0.054    -.1449075    .0011858
         y14 |   .0149272   .0346859     0.43   0.667    -.0532206    .0830751
         y15 |   .0713084    .039059     1.83   0.068    -.0054312     .148048
         y16 |   .1106499   .0416466     2.66   0.008     .0288264    .1924734
         y17 |   .0575054   .0461953     1.24   0.214     -.033255    .1482658
         y18 |   .1139996   .0518429     2.20   0.028     .0121433    .2158559
         y19 |   .1133759    .041656     2.72   0.007     .0315339    .1952179
         y20 |   .1672247   .0583108     2.87   0.004     .0526608    .2817885
         y21 |   .1393014   .0593121     2.35   0.019     .0227702    .2558325
         y22 |   .1218702   .0426705     2.86   0.004     .0380349    .2057054
         y23 |   .0449854   .0296588     1.52   0.130    -.0132854    .1032563
         y24 |   .1217456   .0513458     2.37   0.018     .0208661    .2226252
         y25 |   .0130082   .0281267     0.46   0.644    -.0422526     .068269
         y26 |   .0077887   .0227587     0.34   0.732    -.0369256     .052503
         y27 |   .0468559   .0370114     1.27   0.206    -.0258607    .1195725
         y28 |  -.0052972   .0308846    -0.17   0.864    -.0659764    .0553821
         y29 |   .0301708   .0283337     1.06   0.287    -.0254967    .0858383
         y30 |  -.0036861   .0323317    -0.11   0.909    -.0672085    .0598363
         y31 |   .0816127   .0326933     2.50   0.013     .0173798    .1458455
       _cons |  -.3291672   .1051305    -3.13   0.002    -.5357183   -.1226161
------------------------------------------------------------------------------
Instruments for first differences equation
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L(2/4).L.winv collapsed
    L(2/5).(wndf wdiv) collapsed
Instruments for levels equation
  Standard
    _cons
    size wmtb wcf y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18
    y19 y20 y21 y22 y23 y24 y25 y26 y27 y28 y29 y30 y31 y32
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL(2/4).L.winv collapsed
    DL(2/5).(wndf wdiv) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z =  -6.76  Pr > z =  0.000
Arellano-Bond test for AR(2) in first differences: z =  -0.13  Pr > z =  0.899
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(19)   =  65.88  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(19)   =  19.92  Prob > chi2 =  0.400
  (Robust, but can be weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(8)    =   8.32  Prob > chi2 =  0.403
    Difference (null H = exogenous): chi2(11)   =  11.60  Prob > chi2 =  0.395
  gmm(L.winv, collapse eq(diff) lag(2 4))
    Hansen test excluding group:     chi2(16)   =  17.31  Prob > chi2 =  0.366
    Difference (null H = exogenous): chi2(3)    =   2.60  Prob > chi2 =  0.457
  gmm(L.winv, collapse eq(level) lag(2 4))
    Hansen test excluding group:     chi2(16)   =  17.06  Prob > chi2 =  0.382
    Difference (null H = exogenous): chi2(3)    =   2.85  Prob > chi2 =  0.415
  gmm(wndf wdiv, collapse eq(diff) lag(2 5))
    Hansen test excluding group:     chi2(11)   =  11.86  Prob > chi2 =  0.374
    Difference (null H = exogenous): chi2(8)    =   8.05  Prob > chi2 =  0.428
  gmm(wndf wdiv, collapse eq(level) lag(2 5))
    Hansen test excluding group:     chi2(11)   =  11.85  Prob > chi2 =  0.375
    Difference (null H = exogenous): chi2(8)    =   8.06  Prob > chi2 =  0.427

.
Is there a technical mistake in the model? Is it appropriate to include eq(level) and eq(diff) in gmm() seperately, given this is a two step system GMM?

I appreciate any comment/help. Thanks!