I am fairly new to -xtabond2- command and I have some questions regarding the way for coding.
Here is what I typed:
Code:
xtabond2 winv L.winv wndf wdiv size wcf wmtb y2-y32, iv(size wmtb wcf y2-y32, eq(level)) gmm(L.winv, lag(2 4) eq(diff) collapse) gmm(L.winv, lag(2 4) eq(lev) collapse) gmm(wndf wdiv, lag(2 5) eq(diff) collapse) gmm(wndf wdiv, lag(2 5) eq(level) collapse) small robust twostep
* I treat L.winv wndf and wdiv as endogenous
* size, wcf and wmtb are exogenous
Here is what Stata provides:
Code:
. xtabond2 winv L.winv wndf wdiv size wcf wmtb y2-y32, iv(size wmtb wcf y2-y32, eq( > level)) gmm(L.winv, lag(2 4) eq(diff) collapse) gmm(L.winv, lag(2 4) eq(lev) coll > apse) gmm(wndf wdiv, lag(2 5) eq(diff) collapse) gmm(wndf wdiv, lag(2 5) eq(level > ) collapse) small robust twostep Favoring space over speed. To switch, type or click on mata: mata set matafavor spe > ed, perm. y2 dropped due to collinearity y32 dropped due to collinearity Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step es > timation. Difference-in-Sargan statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: companyno Number of obs = 5708 Time variable : datayearfi~l Number of groups = 502 Number of instruments = 55 Obs per group: min = 1 F(35, 501) = 8.26 avg = 11.37 Prob > F = 0.000 max = 30 ------------------------------------------------------------------------------ | Corrected winv | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- winv | L1. | .0777343 .0238117 3.26 0.001 .0309512 .1245174 | wndf | .4706236 .2684656 1.75 0.080 -.0568335 .9980807 wdiv | -.4705155 .588355 -0.80 0.424 -1.626463 .6854316 size | .0157155 .0052187 3.01 0.003 .0054623 .0259687 wcf | .0939375 .0381943 2.46 0.014 .0188967 .1689783 wmtb | .040033 .0187122 2.14 0.033 .003269 .076797 y3 | .2321169 .1283572 1.81 0.071 -.0200678 .4843016 y4 | .0437833 .0727516 0.60 0.548 -.0991524 .1867191 y5 | .0310705 .0607181 0.51 0.609 -.0882229 .1503639 y6 | .0225263 .0550617 0.41 0.683 -.085654 .1307066 y7 | .0220792 .0305908 0.72 0.471 -.0380229 .0821812 y8 | .0462088 .0320417 1.44 0.150 -.0167438 .1091614 y9 | .0609806 .0341976 1.78 0.075 -.0062078 .128169 y10 | .062331 .0418511 1.49 0.137 -.0198942 .1445562 y11 | .0833537 .0610176 1.37 0.173 -.0365282 .2032357 y12 | .0185959 .0423988 0.44 0.661 -.0647054 .1018972 y13 | -.0718608 .0371793 -1.93 0.054 -.1449075 .0011858 y14 | .0149272 .0346859 0.43 0.667 -.0532206 .0830751 y15 | .0713084 .039059 1.83 0.068 -.0054312 .148048 y16 | .1106499 .0416466 2.66 0.008 .0288264 .1924734 y17 | .0575054 .0461953 1.24 0.214 -.033255 .1482658 y18 | .1139996 .0518429 2.20 0.028 .0121433 .2158559 y19 | .1133759 .041656 2.72 0.007 .0315339 .1952179 y20 | .1672247 .0583108 2.87 0.004 .0526608 .2817885 y21 | .1393014 .0593121 2.35 0.019 .0227702 .2558325 y22 | .1218702 .0426705 2.86 0.004 .0380349 .2057054 y23 | .0449854 .0296588 1.52 0.130 -.0132854 .1032563 y24 | .1217456 .0513458 2.37 0.018 .0208661 .2226252 y25 | .0130082 .0281267 0.46 0.644 -.0422526 .068269 y26 | .0077887 .0227587 0.34 0.732 -.0369256 .052503 y27 | .0468559 .0370114 1.27 0.206 -.0258607 .1195725 y28 | -.0052972 .0308846 -0.17 0.864 -.0659764 .0553821 y29 | .0301708 .0283337 1.06 0.287 -.0254967 .0858383 y30 | -.0036861 .0323317 -0.11 0.909 -.0672085 .0598363 y31 | .0816127 .0326933 2.50 0.013 .0173798 .1458455 _cons | -.3291672 .1051305 -3.13 0.002 -.5357183 -.1226161 ------------------------------------------------------------------------------ Instruments for first differences equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(2/4).L.winv collapsed L(2/5).(wndf wdiv) collapsed Instruments for levels equation Standard _cons size wmtb wcf y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 y27 y28 y29 y30 y31 y32 GMM-type (missing=0, separate instruments for each period unless collapsed) DL(2/4).L.winv collapsed DL(2/5).(wndf wdiv) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -6.76 Pr > z = 0.000 Arellano-Bond test for AR(2) in first differences: z = -0.13 Pr > z = 0.899 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(19) = 65.88 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(19) = 19.92 Prob > chi2 = 0.400 (Robust, but can be weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(8) = 8.32 Prob > chi2 = 0.403 Difference (null H = exogenous): chi2(11) = 11.60 Prob > chi2 = 0.395 gmm(L.winv, collapse eq(diff) lag(2 4)) Hansen test excluding group: chi2(16) = 17.31 Prob > chi2 = 0.366 Difference (null H = exogenous): chi2(3) = 2.60 Prob > chi2 = 0.457 gmm(L.winv, collapse eq(level) lag(2 4)) Hansen test excluding group: chi2(16) = 17.06 Prob > chi2 = 0.382 Difference (null H = exogenous): chi2(3) = 2.85 Prob > chi2 = 0.415 gmm(wndf wdiv, collapse eq(diff) lag(2 5)) Hansen test excluding group: chi2(11) = 11.86 Prob > chi2 = 0.374 Difference (null H = exogenous): chi2(8) = 8.05 Prob > chi2 = 0.428 gmm(wndf wdiv, collapse eq(level) lag(2 5)) Hansen test excluding group: chi2(11) = 11.85 Prob > chi2 = 0.375 Difference (null H = exogenous): chi2(8) = 8.06 Prob > chi2 = 0.427 .
I appreciate any comment/help. Thanks!
0 Response to Coding for xtabond2
Post a Comment