I have a panel of large N and small T. Unbalanced and with time gaps. I hope to instrument the variables without including a lagged dependent variable. I use xtdpdgmm to perform the estimation. My codes are as follows:
Code:
xtdpdgmm idx_study avgPAI propcategory1-propcategory10 /// parent_age cd_gender sleep wc4_b_1 edu_savings parenting, /// model(fod) /// gmm(avgPAI, bodev lag(1 .) ) /// gmm(avgPAI, lag(1 1) diff model(level)) /// gmm(parenting , bodev lag(1 .) ) /// gmm(parenting , lag(1 1) diff model(level)) /// gmm(propcategory1-propcategory10 wc4_b_1 parent_age sleep , bodev lag(0 .)) /// gmm(propcategory1-propcategory10 wc4_b_1 parent_age sleep , lag(0 0) diff model(level)) /// iv(cd_gender edu_savings, model(level)) /// teffects two vce(r)
Code:
Arellano-Bond test for autocorrelation of the first-differenced residuals H0: no autocorrelation of order 1: z = . Prob > |z| = . H0: no autocorrelation of order 2: z = . Prob > |z| = .
Code:
xtdpdgmm idx_study avgPAI propcategory1-propcategory10 /// parent_age cd_gender sleep wc4_b_1 edu_savings parenting if (dynamic>2), /// model(fod) /// gmm(avgPAI, bodev lag(1 .) ) /// gmm(avgPAI, lag(1 1) diff model(level)) /// gmm(parenting , bodev lag(1 .) ) /// gmm(parenting , lag(1 1) diff model(level)) /// gmm(propcategory1-propcategory10 wc4_b_1 parent_age sleep , bodev lag(0 .)) /// gmm(propcategory1-propcategory10 wc4_b_1 parent_age sleep , lag(0 0) diff model(level)) /// iv(cd_gender edu_savings, model(level)) /// teffects two vce(r)
Code:
Group variable: num_child Number of obs = 2723 Time variable: year Number of groups = 2014 Moment conditions: linear = 43 Obs per group: min = 1 nonlinear = 0 avg = 1.352036 total = 43 max = 3 (Std. Err. adjusted for 2,014 clusters in num_child) -------------------------------------------------------------------------------- | WC-Robust idxa_study | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- avgPAI | .5021869 .2527276 1.99 0.047 .00685 .9975238 propcategory1 | .1190317 .0801088 1.49 0.137 -.0379786 .276042 propcategory2 | -.5059096 .5617323 -0.90 0.368 -1.606885 .5950656 propcategory3 | .0418371 .4149987 0.10 0.920 -.7715455 .8552197 propcategory4 | -.0130479 .0470279 -0.28 0.781 -.1052209 .0791252 propcategory5 | .3501446 .280725 1.25 0.212 -.2000663 .9003556 propcategory6 | .5062244 .5492129 0.92 0.357 -.5702132 1.582662 propcategory7 | -.1510797 .1761881 -0.86 0.391 -.496402 .1942427 propcategory8 | -.6715729 .4368173 -1.54 0.124 -1.527719 .1845733 propcategory9 | -.7713343 .750685 -1.03 0.304 -2.24265 .6999812 propcategory10 | .3808067 2.666237 0.14 0.886 -4.844922 5.606535 parent_age | .0070643 .0059831 1.18 0.238 -.0046623 .0187908 cd_gender | -.0600884 .0133498 -4.50 0.000 -.0862535 -.0339234 sleep | .0145435 .0332031 0.44 0.661 -.0505335 .0796204 wc4_b_1 | -.0149009 .0174536 -0.85 0.393 -.0491094 .0193076 edu_savings | .0410117 .0225825 1.82 0.069 -.0032492 .0852725 parenting | .0241621 .0339032 0.71 0.476 -.0422871 .0906112 | year | 2013 | -.3513673 .1278175 -2.75 0.006 -.601885 -.1008497 2014 | -.02285 .0902107 -0.25 0.800 -.1996597 .1539597 2015 | -.1024287 .068121 -1.50 0.133 -.2359435 .0310861 2016 | -.1057155 .0797179 -1.33 0.185 -.2619598 .0505288 2017 | 0 (empty) 2018 | -.0625284 .0786462 -0.80 0.427 -.2166722 .0916153 | _cons | -.0199318 .3966447 -0.05 0.960 -.7973411 .7574775 -------------------------------------------------------------------------------- Instruments corresponding to the linear moment conditions: 5, model(fodev): 2014:B.propcategory1 2014:B.propcategory3 2014:B.propcategory5 2014:B.propcategory7 2014:B.propcategory9 2014:B.wc4_b_1 2014:B.sleep 2014:B.propcategory2 2014:B.propcategory2 2014:B.propcategory4 2014:B.propcategory6 2014:B.propcategory8 2012:L1.B.propcategory8 2013:L1.B.propcategory10 2014:B.parent_age 6, model(level): 2013:D.parent_age 2014:D.cd_gender 2014:D.edu_savings 2014:D.2013bn.year 2013:D.2014.year 2014:D.2015.year 2014:D.2016.year 2013:D.2018.year 2014:D._cons 2014:D._cons 2014:D._cons 2014:D._cons 2014:D._cons 2013:D._cons 2014:D._cons 2014:D._cons 2013:D._cons 2014:D._cons 2013:D._cons 2014:D._cons 7, model(level): _cons _cons 8, model(level): _cons _cons _cons _cons _cons 9, model(level): _cons
My dataset looks like:
Can anyone help me? And does it sill make sense to estimate the serial correlation if no lagged dependent variable is added to the model?
0 Response to GMM without lagged dependent variable using xtdpdgmm
Post a Comment