Hi Statalist,

I understand the question is vague so I hope the following details would make it clearer.
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input str8 id float(round healthshock) str2 cluster_id int score double treatment_intensity float months_exposure
"IN011001" 1 . "01"   .    0         0
"IN011001" 2 0 "01" 115    0         0
"IN011001" 3 0 "01" 172    . 22.454794
"IN011001" 4 0 "01"   .  644  70.55342
"IN011001" 5 0 "01"   . 1052 105.79726
"IN011002" 1 . "01"   .    0         0
"IN011002" 2 0 "01" 107    0         0
"IN011002" 3 0 "01" 141    .  22.52055
"IN011002" 4 0 "01"   .  644  74.03835
"IN011002" 5 0 "01"   . 1052 106.81644
"IN011003" 1 . "01"   .    0         0
"IN011003" 2 0 "01" 113    0         0
"IN011003" 3 0 "01" 167    .  22.38904
"IN011003" 4 0 "01"   .  644  70.25754
"IN011003" 5 0 "01"   . 1052 105.79726
"IN011004" 1 . "01"   .    0         0
"IN011004" 2 0 "01" 115    0         0
"IN011004" 3 0 "01" 142    .  22.52055
"IN011004" 4 0 "01"   .  644   70.5863
"IN011004" 5 1 "01"   . 1052 105.86301
"IN011005" 1 1 "01"   .    0         0
"IN011005" 2 0 "01" 124    0         0
"IN011005" 3 1 "01" 140    .  22.48767
"IN011005" 4 0 "01"   .  644 70.520546
"IN011005" 5 0 "01"   . 1052 105.76438
"IN011006" 1 . "01"   .    0         0
"IN011006" 2 0 "01" 125    0         0
"IN011006" 3 0 "01" 153    . 22.454794
"IN011006" 4 0 "01"   .  644  71.83562
"IN011006" 5 0 "01"   . 1052  106.5863
"IN011007" 1 . "01"   .    0         0
"IN011007" 2 1 "01" 111    0         0
"IN011007" 3 1 "01" 149    . 22.652056
"IN011007" 4 0 "01"   .  644  70.25754
"IN011007" 5 0 "01"   . 1052  110.5315
"IN011008" 1 . "01"   .    0         0
"IN011008" 2 1 "01" 123    0         0
"IN011008" 3 1 "01" 152    .  22.38904
"IN011008" 4 0 "01"   .  644 70.158905
"IN011008" 5 0 "01"   . 1052 105.76438
"IN011009" 1 . "01"   .    0         0
"IN011009" 2 0 "01"  47    0         0
"IN011009" 3 0 "01"  39    . 22.224657
"IN011009" 4 0 "01"   .  644  70.84931
"IN011009" 5 0 "01"   . 1052 106.75069
"IN011010" 1 1 "01"   .    0         0
"IN011010" 2 0 "01" 118    0         0
"IN011010" 3 0 "01" 158    .  22.68493
"IN011010" 4 0 "01"   .  644  70.78356
"IN011010" 5 1 "01"   . 1052 106.91507
"IN011011" 1 . "01"   .    0         0
"IN011011" 2 0 "01" 109    0         0
"IN011011" 3 0 "01" 129    . 21.961643
"IN011011" 4 0 "01"   .  644 70.454796
"IN011011" 5 0 "01"   . 1052  105.8959
"IN011012" 1 1 "01"   .    0         0
"IN011012" 2 0 "01" 116    0         0
"IN011012" 3 0 "01" 111    .  22.52055
"IN011012" 4 0 "01"   .  644  70.78356
"IN011012" 5 0 "01"   . 1052  105.8959
"IN011013" 1 . "01"   .    0         0
"IN011013" 2 0 "01" 116    0         0
"IN011013" 3 0 "01" 185    . 22.356165
"IN011013" 4 1 "01"   .  644 70.520546
"IN011013" 5 1 "01"   . 1052 105.76438
"IN011014" 1 . "01"   .    0         0
"IN011014" 2 1 "01"  90    0         0
"IN011014" 3 1 "20" 148    . 15.156164
"IN011014" 4 0 "01"   .  644 71.178085
"IN011014" 5 0 "01"   . 1052 106.71781
"IN011015" 1 . "01"   .    0         0
"IN011015" 2 0 "01" 110    0         0
"IN011015" 3 0 "01" 132    . 22.060274
"IN011015" 4 0 "01"   .  644  71.93425
"IN011015" 5 0 "01"   . 1052  106.0274
"IN011016" 1 . "01"   .    0         0
"IN011016" 2 0 "01"  95    0         0
"IN011016" 3 0 "01" 114    .  22.19178
"IN011016" 4 0 "01"   .  644 70.224655
"IN011016" 5 1 "01"   . 1052 105.76438
"IN011017" 1 . "01"   .    0         0
"IN011017" 2 1 "01" 121    0         0
"IN011018" 1 . "01"   .    0         0
"IN011018" 2 0 "01" 113    0         0
"IN011018" 3 0 "01" 106    .   22.0274
"IN011018" 4 0 "01"   .  644 70.520546
"IN011018" 5 0 "01"   . 1052 105.79726
"IN011019" 1 . "01"   .    0         0
"IN011019" 2 0 "01" 119    0         0
"IN011019" 3 0 "01" 176    . 23.375343
"IN011019" 4 0 "01"   .  644  71.63836
"IN011019" 5 0 "01"   . 1052 106.55342
"IN011020" 1 . "01"   .    0         0
"IN011021" 1 1 "01"   .    0         0
"IN011021" 2 0 "01" 120    0         0
"IN011021" 3 0 "01" 140    . 22.158905
"IN011021" 4 0 "01"   .  644 70.454796
"IN011021" 5 0 "01"   . 1052 105.83014
"IN011022" 1 . "01"   .    0         0
"IN011022" 2 0 "01" 121    0         0
end

My panel data has rounds 1-5. The variable score is available for rounds 2 and 3. health shock,Treatment intensity and months_exposure is available for rounds 1-5.

While performing regressions I noticed something peculiar in the way results are being displayed and my query relates to that. For illustration purpose, please consider the following results:


(1)
Code:
areg score healthshock i.round,a( id )

Linear regression, absorbing indicators         Number of obs     =      1,912
                                                F(   2,    919)   =     699.53
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8230
                                                Adj R-squared     =     0.6320
                                                Root MSE          =    23.5217

------------------------------------------------------------------------------
       score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
 healthshock |  -7.327439   2.164948    -3.38   0.001    -11.57626   -3.078622
     3.round |    40.5999   1.098226    36.97   0.000     38.44457    42.75522
       _cons |   91.42977   .8498429   107.58   0.000     89.76191    93.09762
-------------+----------------------------------------------------------------
          id |       F(990, 919) =      2.865   0.000         (991 categories)
In this example, out of rounds 2 and 3, round 2 is the reference category and is omitted.

(2)
Code:
areg score treatment_intensity i.round,a( cluster_id ) cluster( cluster_id )
Linear regression, absorbing indicators         Number of obs     =      1,550
                                                F(   2,     19)   =     104.52
                                                Prob > F          =     0.0000
                                                R-squared         =     0.4112
                                                Adj R-squared     =     0.4031
                                                Root MSE          =    28.7665

                                   (Std. Err. adjusted for 20 clusters in cluster_id)
-------------------------------------------------------------------------------------
                    |               Robust
              score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
treatment_intensity |   .1362871    .082724     1.65   0.116    -.0368563    .3094305
            3.round |   36.34813   6.293192     5.78   0.000     23.17633    49.51993
              _cons |    89.9027   1.233783    72.87   0.000     87.32037    92.48504
--------------------+----------------------------------------------------------------
         cluster_id |   absorbed                                      (20 categories)
Similarly in this example round 2 gets omitted.

(3)
Code:
areg score healthshock##c.treatment_intensity i.round,a(id) cluster( cluster_id )

Linear regression, absorbing indicators         Number of obs     =      1,548
                                                F(   4,     19)   =      30.59
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8643
                                                Adj R-squared     =     0.6252
                                                Root MSE          =    22.7989

                                                 (Std. Err. adjusted for 20 clusters in cluster_id)
---------------------------------------------------------------------------------------------------
                                  |               Robust
                            score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
----------------------------------+----------------------------------------------------------------
                    1.healthshock |  -6.939664   5.988231    -1.16   0.261    -19.47317    5.593847
              treatment_intensity |   .1486624   .1219357     1.22   0.238     -.106552    .4038768
                                  |
healthshock#c.treatment_intensity |
                               1  |  -.0561772   .1138478    -0.49   0.627    -.2944634     .182109
                                  |
                            round |
                               1  |          0  (empty)
                               2  |  -35.80429   9.806665    -3.65   0.002    -56.32987    -15.2787
                               3  |          0  (omitted)
                               4  |          0  (empty)
                               5  |          0  (empty)
                                  |
                            _cons |   126.8508    8.48484    14.95   0.000     109.0918    144.6098
----------------------------------+----------------------------------------------------------------
                               id |   absorbed                                     (984 categories)
However, for this analysis, all the rounds are being shown in the result, even the empty ones, which was not the case earlier. Can anyone please tell me why this is occurring?

Moreover, these empty rounds are no longer shown if don't cluster the standard errors, as can be seen below
(4)
Code:
areg score healthshock##c.treatment_intensity i.round,a(id)
Linear regression, absorbing indicators         Number of obs     =      1,548
                                                F(   4,    560)   =     271.37
                                                Prob > F          =     0.0000
                                                R-squared         =     0.8643
                                                Adj R-squared     =     0.6252
                                                Root MSE          =    22.7989

---------------------------------------------------------------------------------------------------
                            score |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
----------------------------------+----------------------------------------------------------------
                    1.healthshock |  -6.939664   2.917619    -2.38   0.018    -12.67048   -1.208849
              treatment_intensity |   .1486624   .0314199     4.73   0.000     .0869472    .2103776
                                  |
healthshock#c.treatment_intensity |
                               1  |  -.0561772   .0967086    -0.58   0.562    -.2461331    .1337787
                                  |
                          3.round |   35.80429   2.203127    16.25   0.000     31.47688    40.13169
                            _cons |   91.04651   .9460822    96.24   0.000     89.18821    92.90481
----------------------------------+----------------------------------------------------------------
                               id |       F(983, 560) =      2.260   0.000         (984 categories)
Bur it can't entirely be due to clustering either, as in example (2) standard errors are clustered but the empty rounds are not displayed.

Also, I'm not sure if this is only a display issue or this has implications for my results as well.

Would appreciate any help in this regard.
Thanks,