Dear Stata members
First, thanks for this wonderful platform to ask queries and clear doubts. I have read a few threads and based on some of those threads, I am posting my doubts

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input long co_code int year float(lever_w size_w dummy trade_credit_w)
  11 2011    .5504084  7.692159 0      .0919173
  11 2012    .5697871  7.931967 0     .08887213
  11 2013    .5391156  8.025386 0     .06992412
  11 2014   .51597077  8.138857 0    .027474463
  11 2015    .4759782  8.160204 0    -.05730373
  11 2016    .4625662  8.169874 0    .008463308
  11 2017   .39045715  8.268808 1    .023023874
  11 2018   .33070305  8.310906 1    .018141583
  11 2019    .2839154  8.385649 1      .0127974
 289 2011   .54094803  7.413488 0      .3342782
 289 2012    .5555683  7.465369 0     .28388202
 289 2013   .51333773  7.327781 0      .3884363
 289 2014   .48577145  7.207416 0      .4057359
 363 2011    .4761355  9.358657 0     .04327172
 363 2012    .4731195  9.282261 0    .065523885
 363 2013   .53195494  9.338382 0     .04692944
 363 2014    .4994195  9.323365 0 -.00004465878
 363 2015   .51551414   9.20133 0    .008859474
 363 2016    .5284721   9.21132 0    -.02343703
 363 2017    .5849603  9.158089 1    -.02696266
 363 2018    .4416465  9.171402 1     -.1686716
 363 2019     .689352   9.14435 1    .033798363
 414 2016    .4542443  6.180017 0     .40248445
 414 2017  .006420134  5.964607 1      .0811505
 414 2018  .005577936  5.776723 1       .213511
 415 2018           .  7.591811 1      .2690852
 415 2019           .  7.536204 1     .11372487
 771 2013    .4651715  6.630683 0     .18166228
 771 2014    .5203515  6.897806 0     .24957076
 771 2015     .461695  7.113387 0      .2509973
 771 2016    .5473848  7.495042 0      .2136068
 771 2017    .5459776  7.675732 1      .5205994
 771 2018    .4951338  7.772121 1      .5433114
 771 2019    .4645513  7.871731 1     .53449523
 783 2011   .19831736  7.452112 0      .1440673
 783 2012    .2092255  7.504777 0      .1442726
 783 2013   .19775394  7.699978 0      .1591269
 783 2014   .13007422  7.688272 0     .10547055
 783 2015   .08677534  7.688822 0     .13824525
 783 2016  .033318035  7.686621 0     .13262965
 783 2017  .025697127  7.672339 1     .13933243
 783 2018  .014560171  7.673084 1     .14108947
 783 2019 .0009790963  7.622028 1     .16375385
1120 2011  .016338103   9.46848 0     .17673732
1120 2012  .032134537   9.61161 0     .18890423
1120 2013   .08688986  9.826855 0     .12449393
1120 2014   .05394961 10.014935 0     .13960168
1120 2015   .03865692  10.14689 0     .12071372
1120 2016   .06567325 10.239388 0     .11970769
1120 2017     .043705  10.37602 1      .1161778
1120 2018   .03458266 10.482662 1     .12359595
1120 2019  .031668555 10.609154 1     .13287362
2248 2017    .1482503  7.934478 1     .05025253
2248 2018   .15626974   8.00933 1     .04204195
2717 2011    .3987688 10.212482 0     -.1650117
2717 2012    .5396248 10.179546 0    -.06461293
2717 2013     .521483 10.359493 0    -.11464672
2717 2014    .5139446 10.229534 0    -.05649667
2717 2015    .4747386  10.36415 0    -.08115133
2717 2016   .31001255 10.589538 0    -.11957822
2717 2017   .26234335 10.676764 1    -.10998888
2717 2018    .2209677  11.94411 1   -.032753333
2717 2019   .19191967 11.893708 1   -.008160293
2842 2011   .24950735  6.491785 0      .3027133
2842 2012    .3842184  6.770675 0      .3133387
2842 2013    .3622974  6.984253 0     .21834183
2842 2014    .3780394  7.066552 0      .2918693
2842 2015    .3651952  7.071573 0     .27504244
2842 2016   .19154836  6.804171 0      .3693434
2842 2017  .012137886  6.426327 1      .2519825
2842 2018   .11468551  6.541318 1     .29500863
2842 2019    .1701168  6.762383 1      .2371921
3335 2011    .3992996  7.243656 0      .3574185
3335 2012    .1974824  7.581821 0      .1959026
3335 2013   .15542907  7.733684 0     .14128721
3335 2014   .02286336  7.778254 0     .07554123
3335 2015  .028543843  7.775822 0     .12504724
3335 2016   .03890818  7.826403 0      .1643721
3335 2017   .05525101  7.927613 1     .14483556
3335 2018   .10858244  8.108293 1      .0895572
3335 2019    .2077677 8.2735405 1     .14501888
3990 2011    .5109358  8.563141 0     .10884224
3990 2015    .4456229  9.215437 0      .1399847
3990 2016   .43831205  9.308274 0     .12745605
3990 2017    .4056455  9.385167 1      .0745315
3990 2018    .3955588   9.53976 1     .07392676
3990 2019    .3502277  9.585972 1     .14768772
3998 2011   .37776425  9.546169 0     .15586448
3998 2012    .3780212  9.717851 0      .1495952
3998 2013   .39086115  9.987824 0     .10335066
3998 2014    .3920296 10.192468 0     .03823784
3998 2015     .409129  10.28826 0     .07513884
3998 2016    .4354037 10.297828 0     .07631767
3998 2017    .4468606 10.463384 1     .06948911
3998 2018    .4743695     10.69 1     .07081716
3998 2019    .4099103 10.978138 1     .08838603
4024 2018    .4125189  9.126492 1     .09601225
4024 2019    .4504824  9.173573 1     .09431474
4030 2016   .17944816   6.26435 0      .3450047
4030 2017    .1738609  6.726233 1     .27482015
end
Code:
**Here Dummmy takes the value 1 if year falls in range 2017-2019 and 0 otherwise
**Setting the panel 
xtset co_code year

*1. Running regression with firm and year fixed effects (xtreg)
xtreg lever_w dummy i.year,fe vce(r)
/*. xtreg lever_w dummy i.year,fe vce(r)
note: 2019.year omitted because of collinearity.

Fixed-effects (within) regression               Number of obs     =         98
Group variable: co_code                         Number of groups  =         15

R-squared:                                      Obs per group:
     Within  = 0.2477                                         min =          2
     Between = 0.0748                                         avg =        6.5
     Overall = 0.0669                                         max =          9

                                                F(8,14)           =       1.78
corr(u_i, Xb) = 0.0080                          Prob > F          =     0.1639

                               (Std. err. adjusted for 15 clusters in co_code)
------------------------------------------------------------------------------
             |               Robust
     lever_w | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       dummy |  -.0949773   .0485165    -1.96   0.071    -.1990348    .0090803
             |
        year |
       2012  |   .0128236   .0322462     0.40   0.697    -.0563376    .0819848
       2013  |  -.0024029   .0361445    -0.07   0.948    -.0799252    .0751194
       2014  |   -.027591   .0464378    -0.59   0.562    -.1271902    .0720083
       2015  |  -.0452929   .0456127    -0.99   0.338    -.1431224    .0525365
       2016  |  -.0478451   .0488754    -0.98   0.344    -.1526725    .0569822
       2017  |  -.0147827   .0322477    -0.46   0.654    -.0839471    .0543817
       2018  |  -.0287685   .0300549    -0.96   0.355    -.0932299     .035693
       2019  |          0  (omitted)
             |
       _cons |   .3690917   .0315912    11.68   0.000     .3013354     .436848
-------------+----------------------------------------------------------------
     sigma_u |  .16558787
     sigma_e |  .08819011
         rho |  .77902858   (fraction of variance due to u_i)
------------------------------------------------------------------------------

*/
*2. Running regression with firm and year fixed effects by using user written command reghdfe without absorbing 
reghdfe lever_w dummy i.year i.co_code , noabsorb vce(r)
/*

. reghdfe lever_w dummy i.year i.co_code , noabsorb vce(r)
(MWFE estimator converged in 1 iterations)
note: 2019.year omitted because of collinearity

HDFE Linear regression                            Number of obs   =         98
Absorbing 1 HDFE group                            F(  22,     75) =      96.26
                                                  Prob > F        =     0.0000
                                                  R-squared       =     0.8369
                                                  Adj R-squared   =     0.7890
                                                  Within R-sq.    =     0.8369
                                                  Root MSE        =     0.0882

------------------------------------------------------------------------------
             |               Robust
     lever_w | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       dummy |  -.0949773   .0484797    -1.96   0.054    -.1915539    .0015993
             |
        year |
       2012  |   .0128236   .0427197     0.30   0.765    -.0722784    .0979257
       2013  |  -.0024029   .0383865    -0.06   0.950    -.0788729     .074067
       2014  |   -.027591   .0412448    -0.67   0.506    -.1097548    .0545729
       2015  |  -.0452929   .0395357    -1.15   0.256    -.1240521    .0334662
       2016  |  -.0478451   .0405997    -1.18   0.242    -.1287239    .0330336
       2017  |  -.0147827   .0453062    -0.33   0.745    -.1050373    .0754719
       2018  |  -.0287685   .0404742    -0.71   0.479    -.1093971    .0518602
       2019  |          0  (omitted)
             |
     co_code |
        289  |   .0217886   .0238414     0.91   0.364     -.025706    .0692832
        363  |   .0690747   .0424434     1.63   0.108    -.0154769    .1536264
        414  |  -.2572126   .1201764    -2.14   0.036    -.4966163   -.0178089
        771  |    .058144   .0336722     1.73   0.088    -.0089344    .1252224
        783  |  -.3580223   .0259388   -13.80   0.000    -.4096951   -.3063496
       1120  |  -.4128115    .027637   -14.94   0.000    -.4678672   -.3577558
       2248  |  -.2373975   .0281001    -8.45   0.000    -.2933757   -.1814193
       2717  |  -.0761221   .0406344    -1.87   0.065    -.1570699    .0048257
       2842  |  -.2101284   .0405275    -5.18   0.000    -.2908633   -.1293935
       3335  |  -.3227527   .0457242    -7.06   0.000      -.41384   -.2316654
       3990  |  -.0117564   .0250256    -0.47   0.640    -.0616099    .0380971
       3998  |  -.0449503   .0357334    -1.26   0.212    -.1161349    .0262343
       4024  |   .0344518   .0316169     1.09   0.279    -.0285323    .0974359
       4030  |  -.2509533   .0336681    -7.45   0.000    -.3180236    -.183883
             |
       _cons |   .5064104   .0359909    14.07   0.000     .4347129    .5781079
------------------------------------------------------------------------------
*/



*3. Running regression with firm and year fixed effects (reghdfe) with absorbing co_codes only
reghdfe lever_w dummy i.year, a(co_code ) vce(r)  
/*

. reghdfe lever_w dummy i.year, a(co_code ) vce(r)
(MWFE estimator converged in 1 iterations)
note: 2019.year omitted because of collinearity

HDFE Linear regression                            Number of obs   =         98
Absorbing 1 HDFE group                            F(   8,     75) =       3.00
                                                  Prob > F        =     0.0057
                                                  R-squared       =     0.8369
                                                  Adj R-squared   =     0.7890
                                                  Within R-sq.    =     0.2477
                                                  Root MSE        =     0.0882

------------------------------------------------------------------------------
             |               Robust
     lever_w | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       dummy |  -.0949773   .0484797    -1.96   0.054    -.1915539    .0015993
             |
        year |
       2012  |   .0128236   .0427197     0.30   0.765    -.0722784    .0979257
       2013  |  -.0024029   .0383865    -0.06   0.950    -.0788729     .074067
       2014  |   -.027591   .0412448    -0.67   0.506    -.1097548    .0545729
       2015  |  -.0452929   .0395357    -1.15   0.256    -.1240521    .0334662
       2016  |  -.0478451   .0405997    -1.18   0.242    -.1287239    .0330336
       2017  |  -.0147827   .0453062    -0.33   0.745    -.1050373    .0754719
       2018  |  -.0287685   .0404742    -0.71   0.479    -.1093971    .0518602
       2019  |          0  (omitted)
             |
       _cons |   .3690917   .0327578    11.27   0.000     .3038348    .4343486
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
     co_code |        15           0          15     |
-----------------------------------------------------+
*/

*4. Running regression with firm and year fixed effects (reghdfe) with absorbing both co_codes and year

reghdfe lever_w dummy , a(co_code year ) vce(r) 
/*
reghdfe lever_w dummy , a(co_code year ) vce(r)  //absorbing co_codes and year 
note: dummy is probably collinear with the fixed effects (all partialled-out values are close to zero; tol = 1.0e-
> 09)
(MWFE estimator converged in 6 iterations)
note: dummy omitted because of collinearity

HDFE Linear regression                            Number of obs   =         98
Absorbing 2 HDFE groups                           F(   0,     75) =          .
                                                  Prob > F        =          .
                                                  R-squared       =     0.8369
                                                  Adj R-squared   =     0.7890
                                                  Within R-sq.    =     0.0000
                                                  Root MSE        =     0.0882

------------------------------------------------------------------------------
             |               Robust
     lever_w | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
       dummy |          0  (omitted)
       _cons |   .3150925   .0089085    35.37   0.000     .2973458    .3328393
------------------------------------------------------------------------------

Absorbed degrees of freedom:
-----------------------------------------------------+
 Absorbed FE | Categories  - Redundant  = Num. Coefs |
-------------+---------------------------------------|
     co_code |        15           0          15     |
        year |         9           1           8     |
-----------------------------------------------------+

. 
*/
My Doubts
1. Why the year 2019 got omitted in 1,2, &3? Is it to avoid the issue of dummy variable trap? Why 2019 and not some other year?
2. Point estimates of 1 & 2 are the same but robust standard errors are different, why is it so?
3. What is the difference between 3 & 4? Why 'dummy' variable got omitted in (4) which was there in 2 & 3.
4. When and under what conditions we should invoke the 'absorb' option
5. Finally, if it makes sense to say a 'good estimation method' in the above, which one is it? Apologies for such a mundane question

Can someone take the trouble to help me here?