I have a cross-sectional dataset (n = 1,145). The theory that I´m using suggests that Z moderates the relationship between X and Y. To investigate this moderation, I am estimating a linear regression model (OLS) with an interaction between X and Z. Both the independent variable (X) and the moderator variable (Z) are continuous. It confuses me that the coefficient of the interaction term is insignificant (p=0.147), whereas the marginal effects of X on Y are significant at each of the values of the moderator (Z).
In line with the theory, the results of the marginal effects show that the effect of X on Y decreases as Z increases. Can I assume that Z moderates the relationship between X and Y even though the interaction term is not significant?
Code:
. regress Y c.X##c.Z Source | SS df MS Number of obs = 1,145 -------------+---------------------------------- F(3, 1141) = 108.86 Model | 115.453988 3 38.4846625 Prob > F = 0.0000 Residual | 403.380401 1,141 .353532341 R-squared = 0.2225 -------------+---------------------------------- Adj R-squared = 0.2205 Total | 518.834389 1,144 .453526564 Root MSE = .59459 ------------------------------------------------------------------------------ Y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | .2563362 .1232238 2.08 0.038 .0145655 .498107 Z | -.3460246 .0897433 -3.86 0.000 -.5221049 -.1699442 | c.X#c.Z | -.0499119 .0344294 -1.45 0.147 -.1174639 .0176402 | _cons | 2.711265 .3254729 8.33 0.000 2.072673 3.349858 ------------------------------------------------------------------------------ . margins, at(Z=(1(0.2)4)) dydx(X) Average marginal effects Number of obs = 1,145 Model VCE : OLS Expression : Linear prediction, predict() dy/dx w.r.t. : X 1._at : Z = 1 2._at : Z = 1.2 3._at : Z = 1.4 4._at : Z = 1.6 5._at : Z = 1.8 6._at : Z = 2 7._at : Z = 2.2 8._at : Z = 2.4 9._at : Z = 2.6 10._at : Z = 2.8 11._at : Z = 3 12._at : Z = 3.2 13._at : Z = 3.4 14._at : Z = 3.6 15._at : Z = 3.8 16._at : Z = 4 ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- X | _at | 1 | .2064244 .0896159 2.30 0.021 .0305939 .3822548 2 | .196442 .0829752 2.37 0.018 .033641 .3592431 3 | .1864596 .0763779 2.44 0.015 .0366028 .3363165 4 | .1764773 .0698363 2.53 0.012 .0394552 .3134993 5 | .1664949 .0633678 2.63 0.009 .0421644 .2908254 6 | .1565125 .0569971 2.75 0.006 .0446816 .2683434 7 | .1465301 .0507612 2.89 0.004 .0469344 .2461258 8 | .1365478 .0447163 3.05 0.002 .0488123 .2242832 9 | .1265654 .0389517 3.25 0.001 .0501404 .2029904 10 | .116583 .0336118 3.47 0.001 .0506352 .1825309 11 | .1066007 .0289327 3.68 0.000 .0498335 .1633678 12 | .0966183 .0252839 3.82 0.000 .0470101 .1462265 13 | .0866359 .0231578 3.74 0.000 .0411992 .1320726 14 | .0766535 .0229809 3.34 0.001 .0315639 .1217432 15 | .0666712 .024795 2.69 0.007 .0180222 .1153201 16 | .0566888 .0282186 2.01 0.045 .0013225 .112055 ------------------------------------------------------------------------------
Here are some further details on the variables I used.
Code:
. sum X Z Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- X | 1,145 2.288355 .7850464 1 4 Z | 1,145 3.453057 .6356878 1 4
Looking forward for any comments and suggestions,
Robin
0 Response to Moderation: Insignificant interaction term but significant marginal effects
Post a Comment