Good afternoon.
I do hope this one finds you well.
While challenging myself with the examples reported in the valuable https://www.stata.com/bookstore/flex...nalysis-stata/, I came across a -glm- option (-lnoffset-, that do the very same job of -exposure-) that does not seem to be documented in the Stata .pdf manual.
Code:
. use http://www.stata-press.com/data/r16/kva.dta (Generator experiment) . streg load, dist(exp) nohr failure _d: 1 (meaning all fail) analysis time _t: failtime Iteration 0: log likelihood = -13.666193 Iteration 1: log likelihood = -12.349873 Iteration 2: log likelihood = -12.209674 Iteration 3: log likelihood = -12.20947 Iteration 4: log likelihood = -12.20947 Exponential PH regression No. of subjects = 12 Number of obs = 12 No. of failures = 12 Time at risk = 896 LR chi2(1) = 2.91 Log likelihood = -12.20947 Prob > chi2 = 0.0878 ------------------------------------------------------------------------------ _t | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- load | .0611146 .0353537 1.73 0.084 -.0081773 .1304065 _cons | -5.872291 1.014178 -5.79 0.000 -7.860043 -3.884539 ------------------------------------------------------------------------------ . glm _d load, link(log) family(poisson) lnoffset(failtime) Iteration 0: log likelihood = -12.211312 Iteration 1: log likelihood = -12.20947 Iteration 2: log likelihood = -12.20947 Generalized linear models Number of obs = 12 Optimization : ML Residual df = 10 Scale parameter = 1 Deviance = .4189406353 (1/df) Deviance = .0418941 Pearson = .4323557572 (1/df) Pearson = .0432356 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] AIC = 2.368245 Log likelihood = -12.20947032 BIC = -24.43013 ------------------------------------------------------------------------------ | OIM _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- load | .0611146 .0353537 1.73 0.084 -.0081773 .1304065 _cons | -5.872291 1.014178 -5.79 0.000 -7.860043 -3.884539 ln(failtime) | 1 (exposure) ------------------------------------------------------------------------------ . glm _d load, link(log) family(poisson) exp(failtime) Iteration 0: log likelihood = -12.211312 Iteration 1: log likelihood = -12.20947 Iteration 2: log likelihood = -12.20947 Generalized linear models Number of obs = 12 Optimization : ML Residual df = 10 Scale parameter = 1 Deviance = .4189406353 (1/df) Deviance = .0418941 Pearson = .4323557572 (1/df) Pearson = .0432356 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] AIC = 2.368245 Log likelihood = -12.20947032 BIC = -24.43013 ------------------------------------------------------------------------------ | OIM _d | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- load | .0611146 .0353537 1.73 0.084 -.0081773 .1304065 _cons | -5.872291 1.014178 -5.79 0.000 -7.860043 -3.884539 ln(failtime) | 1 (exposure) ------------------------------------------------------------------------------ . help lnoffset help for lnoffset not found
Thanks.
0 Response to -lnoffset- and -exposure- options from -glm-
Post a Comment