Dear All,
Good afternoon.
I do hope this one finds you well.
While challenging myself with the examples reported in the valuable https://www.stata.com/bookstore/flex...nalysis-stata/, I came across a -glm- option (-lnoffset-, that do the very same job of -exposure-) that does not seem to be documented in the Stata .pdf manual.
Code:
. use http://www.stata-press.com/data/r16/kva.dta
(Generator experiment)

. streg load, dist(exp) nohr

         failure _d:  1 (meaning all fail)
   analysis time _t:  failtime

Iteration 0:   log likelihood = -13.666193 
Iteration 1:   log likelihood = -12.349873 
Iteration 2:   log likelihood = -12.209674 
Iteration 3:   log likelihood =  -12.20947 
Iteration 4:   log likelihood =  -12.20947 

Exponential PH regression

No. of subjects =           12                  Number of obs    =          12
No. of failures =           12
Time at risk    =          896
                                                LR chi2(1)       =        2.91
Log likelihood  =    -12.20947                  Prob > chi2      =      0.0878

------------------------------------------------------------------------------
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        load |   .0611146   .0353537     1.73   0.084    -.0081773    .1304065
       _cons |  -5.872291   1.014178    -5.79   0.000    -7.860043   -3.884539
------------------------------------------------------------------------------

. glm _d load, link(log) family(poisson) lnoffset(failtime)

Iteration 0:   log likelihood = -12.211312 
Iteration 1:   log likelihood =  -12.20947 
Iteration 2:   log likelihood =  -12.20947 

Generalized linear models                         Number of obs   =         12
Optimization     : ML                             Residual df     =         10
                                                  Scale parameter =          1
Deviance         =  .4189406353                   (1/df) Deviance =   .0418941
Pearson          =  .4323557572                   (1/df) Pearson  =   .0432356

Variance function: V(u) = u                       [Poisson]
Link function    : g(u) = ln(u)                   [Log]

                                                  AIC             =   2.368245
Log likelihood   = -12.20947032                   BIC             =  -24.43013

------------------------------------------------------------------------------
             |                 OIM
          _d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        load |   .0611146   .0353537     1.73   0.084    -.0081773    .1304065
       _cons |  -5.872291   1.014178    -5.79   0.000    -7.860043   -3.884539
ln(failtime) |          1  (exposure)
------------------------------------------------------------------------------

. glm _d load, link(log) family(poisson) exp(failtime)

Iteration 0:   log likelihood = -12.211312 
Iteration 1:   log likelihood =  -12.20947 
Iteration 2:   log likelihood =  -12.20947 

Generalized linear models                         Number of obs   =         12
Optimization     : ML                             Residual df     =         10
                                                  Scale parameter =          1
Deviance         =  .4189406353                   (1/df) Deviance =   .0418941
Pearson          =  .4323557572                   (1/df) Pearson  =   .0432356

Variance function: V(u) = u                       [Poisson]
Link function    : g(u) = ln(u)                   [Log]

                                                  AIC             =   2.368245
Log likelihood   = -12.20947032                   BIC             =  -24.43013

------------------------------------------------------------------------------
             |                 OIM
          _d |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        load |   .0611146   .0353537     1.73   0.084    -.0081773    .1304065
       _cons |  -5.872291   1.014178    -5.79   0.000    -7.860043   -3.884539
ln(failtime) |          1  (exposure)
------------------------------------------------------------------------------

. help lnoffset
help for lnoffset not found
Does anyone know why?

Thanks.