Dear all,

I have difficulty in adjusting endogeneity after using -probit-. According to the results of Probit, some key independent variables are statistically insignificant like larinstitinv, top5institown and tobinq. But I need most of them to be statistically significant. I have no idea about testing and addressing endogeneity issues. Could anyone tell me how to do that? I would be very grateful for your help.

Below is the data sample and probit result.
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input double permno str10 deal_no float(larinstitinv top5institown totinstitown) double deal_value float(firm_size roa leverage tobinq listar cashpay sharepay fincri cross)
81553 "1642835020" 12.879892   43.6682  78.38927        29  6.329557   .13019961    .3565647  .6251571 0 0 0 0 0
45583 "1652279020"   17.0584  43.51479  89.13196        45  5.666264   .07870138   .23612836 1.1347183 0 1 0 0 0
72961 "1656540040"  6.781873 28.285944  84.72234    38.642  6.418923   .14030671   .04348471 1.0054287 0 0 0 0 1
65226 "1658390020"   6.12166 24.462437  93.58447        29  7.546181   .10109966   .38566875 1.0022842 0 1 0 0 0
63125 "1663476020"  8.642229  23.28393  83.72404        28  6.703382    .0614065    .0731441  .7682497 0 0 0 0 0
11903 "1671237020"  6.991612  23.39074  25.96103       9.8         .   .19178738    .0830828 2.6839936 0 1 0 0 0
81061 "1673459040"  12.79749 37.693024  84.89115    95.392  9.840281   .05940879   .06447403  .6662623 1 0 0 0 1
88867 "1673507040"  5.932497 24.273085  84.87262     3.734  5.060143    .2833015   .04826378         . 0 0 0 0 1
24097 "1673733020"  .7716496  2.075638 2.2552416    46.413  3.667298   .17375977   .08246053  1.924844 1 0 1 0 0
65330 "1674569020"  7.170807 21.473536  79.95611       800  9.014261    .0822599   .12570418 1.1652516 0 0 0 0 0
65402 "1674815040"  10.55149 32.235672  92.83104   341.469  7.164488   .11835693    .1309662  .9567543 1 1 0 0 1
77862 "1675860020" 12.948956  48.36299  88.49156   104.814  5.502808   .13450159    .2445187 1.1959064 0 0 0 0 0
80098 "1677795020"  7.674511 17.711124 35.937748      53.4   7.04052   .13053194    .1999219  .6190646 0 1 0 0 0
81061 "1678384020" 12.227973 37.693024  84.89115   212.236  9.840281   .05940879   .06447403  .6662623 1 1 0 0 0
80185 "1678411020" 12.501595 30.153524  93.10918       166   6.19017   .27979687  .006004972  3.785605 0 1 0 0 0
41355 "1683537040"  10.37872 28.690155  82.08459   448.868  8.839126   .16121355   .14065683 1.2165036 1 1 0 0 1
11873 "1683658020"  5.470759  19.60468 35.888397         8  4.319965   .10736042  .019232305  1.565377 0 1 0 0 0
22825 "1683949020"  8.634252 25.813786   42.1837    86.138  5.101937    .1871486    .1026652  1.701409 0 0 0 0 0
77392 "1684671020"  9.195432 35.127193  94.48351        55  5.901928   .24728633  .010012522 2.4348536 0 1 0 0 0
79721 "1687223020" 1.4853896  2.818773  2.818773     26.04  4.534898 -.004548673      .30504  .6579587 0 0 0 0 0
84721 "1687968020" 14.100945  24.07376  57.33063   205.681  7.761487   .10292736    .3324199 1.7766986 1 1 0 0 0
80167 "1688185020"   8.22961  19.18696  67.39301    34.248  6.561223    .0907435   .13443242 1.1441286 1 0 0 0 0
88873 "1692225040"  9.025189  28.82276  98.90736      67.2  6.749352   .24502844  .073103264   3.24765 0 1 0 0 1
10104 "1692716020"  2.947121 10.955528  44.46104  5946.507  9.937261   .23212646   .13786437  3.321313 1 0 0 0 0
24097 "1694877020"  .7698978  2.075638 2.2552416     12.38  3.667298   .17375977   .08246053  1.924844 1 0 1 0 0
80568 "1695309020"  4.957831  18.83521  84.80095        34  6.471354   .12026926   .27074778  1.413486 0 1 0 0 0
65226 "1695629020"  5.288666 24.462437  93.58447  1852.057  7.546181   .10109966   .38566875 1.0022842 1 0 0 0 0
84255 "1696511040" 18.650494  44.11008  97.98711      22.4  5.358024   .09218813 .0009844328 2.1800828 0 1 0 0 1
64899 "1696779040"  6.645437 23.904034  80.52334  1323.234  8.962414   .09259535    .4214766 1.1726292 1 1 0 0 1
80569 "1704748020"  1.341467  4.862891  5.815122       7.6  6.671857  .021512646   .24582046  .4253166 0 0 0 0 0
53640 "1710031020"  6.499226 22.260765  96.50764   136.016  5.705717   .24316573  .010958777  5.406816 1 0 0 0 0
90532 "1710776020"  2.461546  .8044251  .8044251         4 3.2090275   .14082004   .12587357 1.2415997 0 0 0 0 0
75261 "1711994020"  35.63094         .  91.14706    4572.7  7.643237   .16140527   .07390413 1.3981036 1 0 0 0 0
89181 "1713101020"  8.861531 24.677784  56.62741      33.5   4.90423   .24303903   .01285046 3.0054324 0 1 0 0 0
61807 "1713991020"         . 32.270428  86.05929        24  7.172676   .11008135   .26769722  1.143245 0 0 1 0 0
85900 "1716324020" 17.650417  38.39873  87.88174     170.5   6.94901    .1234956    .4772137 1.1599381 0 1 0 0 0
86580 "1720445040" 11.597057 14.858617  55.66696    48.394  7.395437   .12563002 .0005256255 2.3521488 1 1 0 0 1
20512 "1722865020" 10.190647 28.472683   96.5083       145  7.093537   .15014783   .28775412 1.8609844 0 1 0 0 0
47511 "1725059020"  6.428599 20.277657  40.40029       1.2  6.209085   .10190932    .2695728 1.1426606 0 0 0 0 0
76392 "1725662040" 14.989653 36.423237  72.71584         3   5.08912   .18524225           .  2.032474 0 1 0 0 1
66181 "1726780020"  5.382356  19.08136  63.14908  3475.355  10.56893    .2376179    .0554913 2.3726346 1 1 0 0 0
84607 "1727838020"  7.672452  20.79885  53.70712       4.8  5.329268 -.019744337    .4656571 1.8897815 0 0 1 0 0
79094 "1728337040"  7.615555  26.89435  90.60084       185  8.313181    .1244693   .08026318 1.5568042 0 1 0 0 1
80864 "1728510020"  7.994303 26.475813 75.741585    682.55  7.478209     .229511    .2017167  1.345607 1 0 0 0 0
26403 "1728815020"  3.361132 15.472085  65.91328  7531.739 10.881024    .1024493    .2415629 1.1526908 1 0 1 0 0
77780 "1728933020"  6.850841 24.427977  95.82795       287  6.962574   .11334228   .30583075  1.218842 0 0 0 0 0
89614 "1729243020"  8.996272  22.17081  72.31243         8  8.604224  .025489977     .447884   .625711 0 0 1 0 0
76367 "1729826020"  6.226701  22.09291 34.488113     58.33 4.4478493  -.17115504    .2400665 1.2451183 0 0 0 0 0
89743 "1729897020"  5.191266 15.740778 20.464153      10.1   4.90529     .172153     .467919 1.7629976 0 1 0 0 0
83596 "1730322040"  12.78261  40.78517  94.48737   382.854  9.746073   .08690818   .19037865  .9265989 1 1 0 0 1
85991 "1730768020" 18.803642     55.22  79.65611       137  9.021235   .05654223    .7276791 1.0112352 0 0 0 0 0
90377 "1730769020"  9.640486 32.240833  50.35661      78.8  4.914858  -.01649303   .02187821 1.0703081 0 0 0 0 0
86574 "1731085020"  7.817961 17.526278  30.67802    72.219  7.823623   .01965151    .2093209  .3301209 1 0 0 0 0
78213 "1731127040"  9.709722  34.12807  63.41633       4.2 4.3914447  .002600394   .09584308  2.286712 0 0 0 0 1
84283 "1731568020"  3.242239 14.409318  41.41772   511.587  7.312328   .24975945   .17383505   2.13466 1 1 0 0 0
91040 "1731949020"  5.192837 12.806868 31.240137        26  6.208504   .24448393   .25532794 1.6116037 0 0 0 0 0
86709 "1732422040"   7.93836 27.673115  68.72569        11  5.938016    .1084387   .06080721 1.0987972 0 0 0 0 1
83139 "1732588020"  7.112106  21.14558 34.683487        15  5.211184    .0802516    .2410439 1.2337993 0 0 0 0 0
76331 "1732681020"  9.292545    25.119  50.55806     21.66  7.599471  .027927464   .08534713 .27992728 1 0 0 0 0
10709 "1732695020"  2.982859  4.405824  4.431348    11.457  3.632336   .06272321   .02928494 1.0862062 0 0 0 0 0
22103 "1732813020"  4.373944 16.819036  72.58697   459.141  9.754233   .18122715    .2378824  1.949429 1 1 0 0 0
79922 "1733282020"   6.24243 17.382158  43.38095   516.803  7.044158    .2112178   .08724907 1.3847677 1 1 0 0 1
84283 "1733433020"  3.242239 14.409318  41.41772   157.142  7.312328   .24975945   .17383505   2.13466 1 1 0 0 0
89821 "1733468020" 2.6176605 3.0637155 3.0637155    29.175  6.387805  .016809352   .11194517         . 1 0 1 0 0
89397 "1733970040"  4.344704 13.276873  38.97729       5.8  6.412734   .03759773 .0021737062  1.936354 0 1 0 0 1
87267 "1734958020"  8.907758  23.11981  55.19898    9487.4  7.521859    .2009973    .1373328  3.894275 0 0 1 0 0
87478 "1735275020"   7.26054  29.66661  55.90702    61.005  5.063917  -.05319546  .002863301 1.2585547 1 0 0 0 0
90241 "1735869020"  14.76868  47.83927  68.47627       5.5   5.67517   .10941627     .604844 1.0528226 0 0 0 0 0
89752 "1736293020"   22.9342  49.43479 74.446815     5.041  6.885556   .13190906   .22552234 1.7484412 1 1 0 0 0
41443 "1736913020" 9.5081005 19.778873  71.61327       160 10.086355    .1520087    .2493639 1.2573777 0 1 0 0 0
78495 "1738104040" 10.512073  27.23999  56.16467  1010.547  6.580916   .12534665   .11092623  5.137457 1 0 1 0 1
83189 "1738316020" 10.901765  32.26022         .  1122.692   7.28815   .17883505    .3394811 1.3682798 1 1 0 0 0
79502 "1738846020" 9.4001255  31.84179  91.64678       7.6   7.38559   .10569963    .5071975  .8648703 0 0 0 0 0
85860 "1738965020"  8.529675  34.41192  76.77576      16.2  7.702874   .02083529   .19132353 .58096427 0 1 0 0 0
24459 "1739364040"  5.805533  25.22263   79.2235    40.999  9.270624   .14074713     .443197  1.344998 0 0 0 0 1
76127 "1739772020"  8.590772 27.914846  99.41363        15   6.58872   .14226319     .216372 1.6763017 0 1 0 0 0
80223 "1739947020"  6.931577  21.43519  81.47558        44 8.5436535   .02297166   .13700235  .3431969 0 0 0 0 0
66093 "1739992020"  7.876937    20.554  57.81506 72670.997 11.888838   .09645545   .20991266  .8618634 1 0 0 0 0
46931 "1740442020"  9.950427 36.675117  51.96564     9.155 4.4898715    .1917293   .19067445 1.2631646 0 0 0 0 0
53613 "1741256020" 11.733908  40.60383  91.55278   889.649  8.987996    .1846398    .1518785 1.0685129 1 0 0 0 0
85914 "1742837040" 17.170979  31.06348   75.2016       180  9.381264    .1783547   .05023601 2.2524762 0 0 0 0 1
80254 "1743051020"  8.001868  31.01099  88.71101      52.5  6.558137   .12593392    .4377359 1.4670846 0 1 0 0 0
90377 "1743084020"  9.640486 32.240833  50.35661         7  4.914858  -.01649303   .02187821 1.0703081 0 1 0 0 0
39693 "1743272040"  16.15781  41.62298  76.32452   124.623  6.907663   .11817187    .2860513 1.0782562 0 0 0 0 1
84176 "1743372040"  9.359533 28.114355 71.997856   366.702  8.302174    .1583486    .2047734 2.1536508 0 1 0 0 1
10785 "1743518020"  9.599111 28.387264  63.67007         8 4.0548587   .11994383 .0032942074  1.894954 0 1 0 0 0
73139 "1744390040"  3.245326 12.043897  44.47099       140   8.50595    .2365648   .04684371  3.688161 0 1 0 0 1
18729 "1744801020"  6.677524 16.842442 68.026695       100  9.048656    .3173702    .4050969  3.733138 0 0 0 0 0
28222 "1745101020"  7.876719 23.442595  81.77579       116  9.250407   .16177657    .2452444 1.4207412 0 0 0 0 0
11976 "1746350040" 13.762606  42.46059  90.32993       150  8.101163   .05903041  .003971743 1.0076706 0 1 0 0 1
90597 "1747715020"  7.608595  14.40282 15.780938        93  5.267698   .12209683   .17417216 1.7754734 0 1 0 0 0
89418 "1748204020"  12.73904 35.486805   64.1298      44.3  5.654683   .15685546   .19956167 1.7041743 0 1 0 0 0
51625 "1748540020" 14.951595  38.32568  69.22112   809.379   8.92861  .036321323   .16000503 .47963545 1 1 0 0 0
12217 "1748658020"  15.74334  38.22267  70.13188        14  5.026666   .13734058   .17720306  2.573909 0 1 0 0 0
76215 "1748698020"  8.171618 20.388664  42.62305   101.313  5.381021   .08349597    .4562566 2.1140008 1 0 0 0 0
87242 "1748702040"  6.942284 24.944496  58.23642    40.052  5.346288  .036067635           . 1.1605072 0 1 0 0 1
24459 "1748879020"  5.842854  25.22263   79.2235        67  9.270624   .14074713     .443197  1.344998 0 1 0 0 0
84420 "1748903020"  5.484814 23.559454  57.49706       125  4.873027   -.1732152    .7650173 1.4846798 1 0 0 0 0
76624 "1748972020" 12.815978  40.44864  91.59586       300  6.597076   .06461159    .3069791 2.2610688 0 0 1 0 0
90532 "1749742020"  2.696425  2.920601 2.9328046       9.5 3.2090275   .14082004   .12587357 1.2415997 0 0 0 0 0
end



Iteration 0: log likelihood = -1175.8548
Iteration 1: log likelihood = -1141.7252
Iteration 2: log likelihood = -1141.4575
Iteration 3: log likelihood = -1141.4575

Probit regression Number of obs = 2,169
LR chi2(11) = 68.79
Prob > chi2 = 0.0000
Log likelihood = -1141.4575 Pseudo R2 = 0.0293

-------------------------------------------------------------------------------
cross | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
larinstitinv | .0047034 .0091793 0.51 0.608 -.0132877 .0226946
top5institown | -.0046513 .0064633 -0.72 0.472 -.0173192 .0080166
totinstitown | .0058695 .0022333 2.63 0.009 .0014924 .0102466
firm_size | .0533325 .0197543 2.70 0.007 .0146148 .0920503
roa | -.1606951 .3697687 -0.43 0.664 -.8854285 .5640382
leverage | -.638889 .1914703 -3.34 0.001 -1.014164 -.263614
tobinq | .0375907 .0314943 1.19 0.233 -.0241369 .0993183
listar | -.2984842 .0689512 -4.33 0.000 -.433626 -.1633424
cashpay | .0661437 .0650047 1.02 0.309 -.0612632 .1935506
sharepay | -.2645316 .1485917 -1.78 0.075 -.5557661 .0267029
fincri | -.0807493 .0794607 -1.02 0.310 -.2364894 .0749907
_cons | -1.269006 .1774141 -7.15 0.000 -1.616731 -.9212803
-------------------------------------------------------------------------------


Best wishes,
Wenyu
​​​​​​​