I am trying to understand how one can determine the probability of variable being positive in the next time period. Will it simply be the Beta coefficient?
I have this house house price index data with quarterly time periods however, I am unable to determine a method of checking this. I tried looking online but could not really find a clear direction or answer. WIll be great if you all can help out.
Similarly I am interested in knowing the estimated probability of the variable of interest having a positive value in the next period, assuming some values for this period and (if necessary) earlier periods? I was thinking of taking a lag of 12 on the independent variable? However will be great to know if there is some logical reasoning behind determining this.
Thank you.
The data is posted below:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float qtr double ire byte ire_up 60 3.612956374109727 . 61 3.6073629526062674 0 62 3.683168175768565 1 63 3.702017767254164 1 64 3.6792002614994734 0 65 3.629673356965487 0 66 3.6683909916866 1 67 3.724207987167231 1 68 3.676384212721243 0 69 3.673920626655173 0 70 3.7650253482932237 1 71 3.778535040432059 1 72 3.863949784193698 1 73 3.9036097127264004 1 74 3.9415953998103266 1 75 3.924492931710415 0 76 3.9547701855887216 1 77 4.0093094130255205 1 78 4.000722290432553 0 79 3.9603235259321576 0 80 3.990009446587858 1 81 3.943699951168572 0 82 4.0003946235368835 1 83 4.017056667675216 1 84 3.9702164390058767 0 85 3.939542837177556 0 86 3.9534777597137096 1 87 3.923763811631166 0 88 3.8978084557030344 0 89 3.8552304070225127 0 90 3.8647867333428336 1 91 3.863217141135468 0 92 3.8254886055759245 0 93 3.7689121617374726 0 94 3.791386402217803 1 95 3.74442531849458 0 96 3.7377315211292523 0 97 3.7022299384820743 0 98 3.7322621671940697 1 99 3.7170076218352723 0 100 3.692007058057744 0 101 3.6713822672465364 0 102 3.696135564753703 1 103 3.716917683394428 1 104 3.6800808597575867 0 105 3.669508033834646 0 106 3.7157769512320895 1 107 3.6996438099944564 0 108 3.6630692172141193 0 109 3.6228892130740906 0 110 3.6823053922447677 1 111 3.7328102114198773 1 112 3.7051193699347245 0 113 3.6766525087394157 0 114 3.7343784941851546 1 115 3.761541917737704 1 116 3.78048049081674 1 117 3.731114849312694 0 118 3.7970138689536563 1 119 3.853423082524823 1 120 3.8787908848059027 1 121 3.841933103852239 0 122 3.899830983862784 1 123 3.873217725970336 0 124 3.8793593079843487 1 125 3.815692705478151 0 126 3.8638049775575234 1 127 3.892697464308256 1 128 3.8826415674566297 0 129 3.838294653517233 0 130 3.8740448799429448 1 131 3.874088504748847 1 132 3.839566284592879 0 133 3.844942589745524 1 134 3.8844791318537335 1 135 3.864614785933154 0 136 3.893111301142174 1 137 3.848051790008918 0 138 3.859058842232229 1 139 3.913521881551882 1 140 3.9308447596687337 1 141 3.8820502775311962 0 142 3.919377891819489 1 143 3.958839795203055 1 144 3.9589886490288735 1 145 3.9676715021389626 1 146 4.068551427612793 1 147 4.074595833473368 1 148 4.0795405211520865 1 149 4.125101675328523 1 150 4.192195451083905 1 151 4.2566788080002205 1 152 4.2943000019498445 1 153 4.302323036163 1 154 4.34191922852453 1 155 4.427729896401545 1 156 4.468891021694349 1 157 4.43590028457885 0 158 4.523991583430157 1 159 4.556902835127961 1 160 4.547791041906662 0 161 4.54359154674171 0 162 4.575734166208472 1 163 4.622839166128182 1 164 4.625797962950707 1 165 4.605191185767595 0 166 4.5846949925700144 0 167 4.589255211965498 1 168 4.616067592975519 1 169 4.607940345550701 0 170 4.650407379157976 1 171 4.675129923242991 1 172 4.686915136331837 1 173 4.693351378476683 1 174 4.74270530300092 1 175 4.78383422889201 1 176 4.777993443080734 0 177 4.7770204429147505 0 178 4.818012865016663 1 179 4.8634646415452805 1 180 4.863010386137779 0 181 4.871530302548306 1 182 4.901472745045978 1 183 4.938217994513995 1 184 4.951859337444899 1 185 4.971777341803963 1 186 5.018327632056576 1 187 5.031761228441853 1 188 5.038868946870288 1 189 5.024072607659581 0 190 5.013223275714393 0 191 4.99844192284112 0 192 4.968086114405627 0 193 4.922857077705888 0 194 4.888583660926652 0 195 4.844771954759856 0 196 4.80277682839408 0 197 4.745126022608024 0 198 4.71274664462973 0 199 4.694106459175766 0 200 4.6652082828912365 0 201 4.622958039892735 0 202 4.587940605565803 0 203 4.541432410834532 0 204 4.4869743151269805 0 205 4.420819371643034 0 206 4.357804380197787 0 207 4.295690938451489 0 208 4.247753538483833 0 209 4.215130492082665 0 210 4.225391830295849 1 211 4.235588015313755 1 212 4.20531332223748 0 213 4.200894370391146 0 214 4.25626497931372 1 215 4.288145807857694 1 216 4.303998874795563 1 217 4.351019596745103 1 218 4.429316864980923 1 219 4.466594090218835 1 220 4.470966567470363 1 221 4.4838530377060035 1 222 4.513788180793635 1 223 4.534714459335785 1 224 4.544009420472306 1 225 4.543551132388228 0 226 4.584292761304076 1 227 4.618071603642537 1 228 4.628855462117116 1 229 4.641699781329882 1 230 4.694218071219737 1 231 4.723411783155739 1 232 4.74189011482387 1 233 4.758522833186285 1 234 4.773402115181506 1 235 4.786156685322633 1 236 4.777466659134958 0 237 4.770986273880159 0 238 4.783584117951029 1 239 4.784344294760096 1 240 4.777276410152342 0 end format %tq qtr
0 Response to Probit Estimation Help
Post a Comment