I could use your input on the following 😊
My case: I am testing the influence of a factor variable (4 different countries) on an ordinal outcome variable (text complexity, scale 1-6). Since the parallel lines assumption is not met for all four categories of the factor variable, I use gologit2 for a partial proportional odds model. This gives me the odds ratios for the predictor's influence at each cut off point, which is fine. However, it is rather detailed for the hypothesis I am testing, which suggests that text complexity increases depending on the country (category 1 in the factor variable should be lowest, 4 highest). What I can say based on the PPO model is that this varies at each cut off point (which makes sense). Yet computing a cumulative PO model with ologit also shows overaching block patterns (two low countries vs two higher countries) but not the increasing trend as hypothesized.
My question: I have read that I could still use ologit in favour of parsimoniousness (justifying with BIC, which indeed is lower for olgit than gologit2), but I'm not sure if ignoring the violated paralell lines assumption is a good way to go. Do you have experience with whether it is "okay" or common to do this? Or maybe other ideas to make interpretation less detailed? I was thinking of clustering the scale values again, so I have less cut off points ...
I'm looking forward to your opinions on this and am trying to copy the gologit2 and ologit models below (first time, so I hope this works).
Thanks,
Julia
Code:
ologit icomplexity i.csystem, or Iteration 0: log likelihood = -5620.6987 Iteration 1: log likelihood = -5537.1818 Iteration 2: log likelihood = -5537.0217 Iteration 3: log likelihood = -5537.0217 Ordered logistic regression Number of obs = 4,563 LR chi2(3) = 167.35 Prob > chi2 = 0.0000 Log likelihood = -5537.0217 Pseudo R2 = 0.0149 ------------------------------------------------------------------------------ icomplexity | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- csystem | 2 | .9913936 .080441 -0.11 0.915 .8456296 1.162283 3 | 1.925266 .1530373 8.24 0.000 1.647517 2.249841 4 | 2.157683 .1677328 9.89 0.000 1.852752 2.512799 -------------+---------------------------------------------------------------- /cut1 | .3362666 .0567362 .2250656 .4474675 /cut2 | 1.378303 .0602158 1.260282 1.496323 /cut3 | 3.011779 .0782728 2.858367 3.16519 /cut4 | 4.851709 .1477801 4.562065 5.141352 /cut5 | 5.997357 .248598 5.510114 6.4846 ------------------------------------------------------------------------------ Note: Estimates are transformed only in the first equation.
Code:
gologit2 icomplexity i.csystem, autofit lrforce or ------------------------------------------------------------------------------ Testing parallel lines assumption using the .05 level of significance... Step 1: Constraints for parallel lines imposed for 4.csystem (P Value = 0.8842) Step 2: Constraints for parallel lines are not imposed for 2.csystem (P Value = 0.00000) 3.csystem (P Value = 0.00000) Wald test of parallel lines assumption for the final model: ( 1) [1]4.csystem - [2]4.csystem = 0 ( 2) [1]4.csystem - [3]4.csystem = 0 ( 3) [1]4.csystem - [4]4.csystem = 0 ( 4) [1]4.csystem - [5]4.csystem = 0 chi2( 4) = 1.16 Prob > chi2 = 0.8842 An insignificant test statistic indicates that the final model does not violate the proportional odds/ parallel lines assumption If you re-estimate this exact same model with gologit2, instead of autofit you can save time by using the parameter pl(1b.csystem 4.csystem) ------------------------------------------------------------------------------ Generalized Ordered Logit Estimates Number of obs = 4,563 LR chi2(11) = 232.51 Prob > chi2 = 0.0000 Log likelihood = -5504.443 Pseudo R2 = 0.0207 ( 1) [1]4.csystem - [2]4.csystem = 0 ( 2) [2]4.csystem - [3]4.csystem = 0 ( 3) [3]4.csystem - [4]4.csystem = 0 ( 4) [4]4.csystem - [5]4.csystem = 0 ------------------------------------------------------------------------------ icomplexity | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1 | csystem | 2 | .8776573 .072918 -1.57 0.116 .7457701 1.032868 3 | 1.78562 .15009 6.90 0.000 1.514403 2.10541 4 | 2.270685 .1801171 10.34 0.000 1.943736 2.652629 | _cons | .745114 .0430006 -5.10 0.000 .6654261 .834345 -------------+---------------------------------------------------------------- 2 | csystem | 1 | 1 4.40e-17 -4.16 0.000 1 1 2 | 1.289039 .1231981 2.66 0.008 1.068842 1.554599 3 | 2.089253 .1922505 8.01 0.000 1.744474 2.502174 4 | 2.270685 .1801171 10.34 0.000 1.943736 2.652629 | _cons | .2302401 .01509 -22.41 0.000 .202485 .2617996 -------------+---------------------------------------------------------------- 3 | csystem | 1 | 1 1.20e-17 -8.01 0.000 1 1 2 | 2.26293 .3548734 5.21 0.000 1.664123 3.077207 3 | 3.49951 .5104081 8.59 0.000 2.62941 4.657534 4 | 2.270685 .1801171 10.34 0.000 1.943736 2.652629 | _cons | .0332747 .0035651 -31.76 0.000 .0269722 .04105 -------------+---------------------------------------------------------------- 4 | csystem | 2 | 3.739563 1.489331 3.31 0.001 1.713241 8.162503 3 | 7.827675 2.759696 5.84 0.000 3.92226 15.62173 4 | 2.270685 .1801171 10.34 0.000 1.943736 2.652629 | _cons | .0032357 .0009507 -19.51 0.000 .0018192 .0057552 -------------+---------------------------------------------------------------- 5 | csystem | 2 | 5.32339 3.901655 2.28 0.023 1.265668 22.39014 3 | 10.30695 6.901483 3.48 0.000 2.774406 38.29045 4 | 2.270685 .1801171 10.34 0.000 1.943736 2.652629 | _cons | .0008055 .0004672 -12.28 0.000 .0002585 .0025103 ------------------------------------------------------------------------------ Note: _cons estimates baseline odds.
0 Response to ologit in favour of parsimoniousness despite violated parallel lines?
Post a Comment